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ABSTRACT
The stochastic block model is one of the most studied network models for community detection, and
fitting its likelihood function on large-scale networks is known to be challenging. One prominent work
that overcomes this computational challenge is the fast pseudo-likelihood approach proposed by Amini
et al. for fitting stochastic block models to large sparse networks. However, this approach does not have
convergence guarantee, and may not be well suited for small and medium scale networks. In this article,
we propose a novel likelihood based approach that decouples row and column labels in the likelihood
function, enabling a fast alternating maximization. This new method is computationally efficient, performs
well for both small- and large-scale networks, and has provable convergence guarantee. We show that our
method provides strongly consistent estimates of communities in a stochastic block model. We further
consider extensions of our proposed method to handle networks with degree heterogeneity and bipartite
properties. Supplementary materials for this article are available online.
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1. Introduction

One of the fundamental problems in network data analysis is
community detection which aims to divide the nodes in a net-
work into several communities such that nodes within the same
community are densely connected, and nodes from different
communities are relatively sparsely connected. Identifying such
communities can provide important insights on the organiza-
tion of a network. For example, in social networks, communities
may correspond to groups of individuals with common inter-
ests (Moody and White 2003); in protein interaction networks,
communities may correspond to proteins that are involved in
the same cellular functions (Spirin and Mirny 2003). There is
a vast literature on network community detection contributed
from different scientific communities, such as computer science,
physics, social science, and statistics. We refer to Fortunato
(2010), Fortunato and Hric (2016), and Zhao (2017) for com-
prehensive reviews on this topic.

In the statistics literature, the majority of community detec-
tion methods are model-based, which postulate and fit a prob-
abilistic model that characterizes networks with community
structures (Holland, Laskey, and Leinhardt 1983; Airoldi et al.
2008; Karrer and Newman 2011). Within this family, the
stochastic block model (Holland, Laskey, and Leinhardt SBM;
1983) is perhaps the best studied and most commonly used.
The SBM is a generative model, in which the nodes are divided
into blocks, or communities, and the probability of an edge
between two nodes only depends on which communities they
belong to and is independent across edges once given the com-
munity assignment. Several extensions of the SBM have been
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considered, notably the mixed membership model (Airoldi et al.
2008), which allows each node to be associated with multiple
clusters, and the degree corrected stochastic block model (Kar-
rer and Newman DCSBM 2011), which accommodates degree
heterogeneity by including additional degree parameters. Due to
the rapidly increasing interests, the statistical literature on com-
munity detection in SBMs is fast growing with great advances
on algorithmic solutions (Snijders and Nowicki 1997; Nowicki
and Snijders 2001; Daudin, Picard, and Robin 2008; Karrer and
Newman 2011; Decelle et al. 2011; Amini et al. 2013; Bickel
et al. 2013, among others) and theoretical understandings of
consistency and detection thresholds (Bickel and Chen 2009;
Rohe, Chatterjee, and Yu 2011; Zhao, Levina, and Zhu 2012;
Lei and Rinaldo 2015; Abbe 2017; Gao et al. 2017; Gao et al.
2018; Su, Wang, and Zhang 2019; Abbe et al. 2020, among
others.)

It is well known that fitting the block model (i.e., SBM
and DCSBM) likelihood functions is a nontrivial task, and in
principle optimizing over all possible community assignments
is a NP-hard problem (Bickel and Chen 2009). Many work have
considered using spectral clustering for community detection
in SBMs, which is computationally efficient and ensures weak
consistency, that is, the proportion of misclassified nodes tends
to zero as the network size increases, under certain regularity
conditions (Rohe, Chatterjee, and Yu 2011; Lei and Rinaldo
2015; Joseph et al. 2016). As such, spectral clustering is often
used to produce initializations for methods that aim to achieve
strong consistency (Gao et al. 2017), that is, probability of the
estimated label being equal to the true label converges to one as

© 2021 American Statistical Association
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Figure 1. An illustrative example comparing the pseudolikelihood method by Amini et al. (2013) and the proposed profile-pseudo likelihood method. Details of the
simulation setting are described in Section 5.1.

the network size grows, and methods that aim to directly max-
imize the nonconvex SBM and DCSBM likelihood functions
(Amini et al. 2013; Bickel et al. 2013).

To overcome the computational challenge in fitting the SBM
likelihood, Amini et al. (2013) proposed a novel pseudolikeli-
hood approach that approximates the row rums within blocks
using Poisson random variables, and simplifies the likelihood
function by lifting the symmetry constraint on the adjacency
matrix. This leads to a fast approximation to the block model
likelihood, which subsequently enables efficient maximization
that can easily handle up to millions of nodes. Additionally, it is
shown that the maximum pseudolikelihood estimator achieves
(weak) community detection consistency, in the case of a sparse
SBM with two communities. This pioneer work makes the
SBM an attractive approach for network community detection,
due to its computational scalability and theoretical properties
such as the community detection consistency. However, this
method may have two drawbacks. First, in the examples that
were presented in Amini et al. (2013), the authors found that
empirically the pseudolikelihood maximization algorithm con-
verged fast. It is, however, not guaranteed that the algorithm
will converge in general (see, e.g., Figure 1). Convergence is
a critical property as it guarantees that the final estimator
exists, and is therefore important both computationally and
statistically. Second, the pseudolikelihood approach may not be
suitable for small and medium scale networks, as the Poisson
approximation may have non negligible approximation errors
in such cases. In the case of the DCSBM, cleverly employing the
observation that the conditional distribution (on node degrees)
of the Poisson variables is multinomial, Amini et al. (2013)
proposed a conditional pseudolikelihood approach that permits
a fast estimation and adapts to both small- and large-scale net-
works. However, the algorithm still does not have convergence
guarantees.

Motivated by the pseudolikelihood approach, in this work,
we propose a new SBM likelihood fitting method that decouples
the membership labels of the rows and columns in the likelihood
function, treating the row label as a vector of latent variables
and the column label as a vector of unknown parameters. Cor-
respondingly, the likelihood can be maximized in an alternating
fashion over the block model parameters and over the column

label, where the maximization now involves a tractable sum over
the distribution of latent row label. Furthermore, we consider
a profile-pseudo likelihood that adopts a hybrid framework
of the profile likelihood and the pseudolikelihood, where the
symmetry constraint on the adjacency matrix is also lifted. Our
proposed method retains and improves on the computational
efficiency of the pseudolikelihood method, performs well for
both small and large scale networks and has provable conver-
gence guarantee. We show that the community label (i.e., col-
umn label) estimated from our proposed method enjoys strong
consistency, as long as the initial label has an overlap with the
truth beyond that of random guessing. We further consider two
extensions of the proposed method, including to the DCSBM
and to the bipartite stochastic block model (Larremore, Clauset,
and Jacobs BiSBM; 2014).

Our work is closely related to the recent and growing lit-
erature on strong consistency (or exact recovery) pursuit in
community detection (see, e.g., Abbe, Bandeira, and Hall 2015;
Lei and Zhu 2017; Gao et al. 2017; Gao et al. 2018). The
strong consistency property may be more desirable than weak
consistency, as it enables establishing the asymptotic normality
of the SBM plug-in estimators (Amini et al. 2013) and per-
forming goodness-of-fit tests (Lei 2016; Hu et al. 2020b). To
achieve strong consistency, the above methods usually con-
sider a refinement step after obtaining the initial label, which
is assumed to obey weak consistency. For example, in Gao
et al. (2017), a majority voting algorithm is applied to the
clustering label obtained from spectral clustering. Similarly, our
proposed profile-pseudo likelihood estimation can be viewed as
a refinement on the initial label to achieve strong consistency.
Similar to other refinement algorithms, the scalability of our
proposed method depends on the initialization step. While
spectral clustering is used to produce initial solutions in our
work, other initialization methods can be considered as well
(see Section 7).

The rest of the article is organized as follows. Section 2 intro-
duces the profile-pseudo likelihood function and an efficient
algorithm for its maximization. Moreover, we discuss the con-
vergence guarantee of the algorithm. Section 3 shows the strong
consistency property of the community label estimated from
the proposed algorithm. Section 4 considers two important
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extensions of the proposed method. Section 5 demonstrates
the efficacy of the proposed method through comparative sim-
ulation studies. Section 6 presents analyses of two real-world
networks with communities. A discussion section concludes the
article.

2. Profile-Pseudo Likelihood

Let G(V , E) denote a network, where V = {1, 2, . . . , n} is the set
of n nodes and E is the set of edges between the nodes. The net-
work G(V , E) can be uniquely represented by the corresponding
n×n adjacency matrix A, where Aij = 1 if there is an edge (i, j) ∈
E from node i to node j and Aij = 0 otherwise. In our work, we
focus on unweighted and undirected networks, and thus A is
a binary symmetric matrix. Under the stochastic block model,
there are K communities (or blocks) and each node belongs
to only one of the communities. Let c = (c1, c2, . . . , cn) ∈
{1, 2, . . . , K}n denote the true community labels of the nodes,
and assume that ci’s are iid categorical variables with parameter
vector π = (π1, . . . , πK), where

∑
k πk = 1. Conditional on

the community labels, the edge variables Aij’s are independent
Bernoulli variables with E(Aij|c) = Pcicj , where P ∈ [0, 1]K×K

is the symmetric edge-probability matrix with the klth entry
Pkl characterizing the probability of connection between nodes
in communities k and l. Let � = (π , P). Our objective is to
estimate the unknown community labels c given the observed
adjacency matrix A.

Denote the rows of A as ai = (Ai1, Ai2, . . . , Ain), 1 ≤ i ≤ n
and let e = (e1, e2, . . . , en) ∈ {1, 2, . . . , K}n denote the column
labeling vector. Define the pseudolikelihood function as

LPL(�, e; {ai}) =
n∏

i=1

⎧⎨⎩
K∑

l=1
πl

n∏
j=1

PAij
lej

(1 − Plej)
1−Aij

⎫⎬⎭ , (1)

with its logarithm as

�PL(�, e; {ai}) =
n∑

i=1
log

⎧⎨⎩
K∑

l=1
πl

n∏
j=1

PAij
lej

(1 − Plej)
1−Aij

⎫⎬⎭ .

We make a few remarks on the objective function defined in
Equation (1). First, in Equation (1), we treat the row labels as
a vector of latent variables and the column labels e as a vector
of unknown model parameters. That is, given ej, each Aij is
considered a mixture of K Bernoulli random variables with
mean Plej , 1 ≤ l ≤ K. This formulation decouples the row and
column labels, and allows us to derive a tractable sum when opti-
mizing for the column labels e and the block model parameter
�. Second, the objective function LPL(�, e; {ai}) is calculated
while lifting the symmetry constraint on the adjacency matrix
A, or equivalently, ignoring the dependence among the rows
ai’s. Hence, we refer to Equation (1) as the pseudolikelihood
function, which can be considered as an approximation to the
SBM likelihood function.

We consider an iterative algorithm that alternates between
updating e and updating �. In each iteration, the estimation
is carried out by first profiling out the nuisance parameter
� using max� LPL (�, e; {ai}) given the current estimate of e,
and then maximizing the profile likelihood with respect to e.

This is referred to as the profile-pseudo likelihood method. We
show in Theorem 1 the convergence guarantee of this efficient
algorithm, and establish in Theorem 2 the strong consistency of
the estimated column labels e.

The estimation procedure proceeds in detail as follows. First,
given the current ê and treating the row labels as a vector of
latent variables, LPL(�, ê; {ai}) can be viewed as the likelihood
of a mixture model with iid observations {ai} and parameter �.
Consequently, LPL(�, ê; {ai}) can be maximized over � using
an expectation-maximization (EM) algorithm, where both the
E-step and M-step updates have closed-form expressions. Next,
given the estimated �̂, we update e, treating LPL(�̂, e; {ai}) as
the objective function. In this step, finding the maximizer of
LPL(�̂, e; {ai}) with respect to e is a NP-hard problem since,
in principle, it requires searching over all possible label assign-
ments. As an alternative, we propose a fast updating rule
that leads to a nondecreasing objective function LPL(�̂, e; {ai})
(although not necessarily maximized), which ensures the desir-
able ascent property of the iterative algorithm. This algorithm is
summarized in Algorithm 1.

In what follows, we discuss in details the profile-pseudo like-
lihood algorithm. We refer to the iterations between updating
e and � as the outer iterations, and the iterations in the EM
algorithm used to update � as the inner iterations. Specifically,
in the (t + 1)-th step of the EM (inner) iteration, given e(s) and
the parameter estimate from the previous EM update �(s,t) =
(π (s,t), P(s,t)), we let

τ
(s,t+1)

ik =
π

(s,t)
k

n∏
j=1

{
P(s,t)

ke(s)
j

}Aij {
1 − P(s,t)

ke(s)
j

}1−Aij

K∑
l=1

π
(s,t)
l

n∏
j=1

{
P(s,t)

le(s)
j

}Aij {
1 − P(s,t)

le(s)
j

}1−Aij
(2)

for each 1 ≤ i ≤ n and 1 ≤ k ≤ K, which calculates the
conditional probability that the row label of node i equals to k at
the (t + 1)th step of the EM iteration. Next, we define

Q(�|�(s,t), e(s)) = Ez|{ai};�(s,t),e(s)

{
log f

(
{ai}, z; �, e(s)

)}
,

where z denotes the latent row labels and

f ({ai}, z; �, e(s)) =
n∏

i=1

⎧⎨⎩πzi

n∏
j=1

PAij

zie(s)
j

(1 − Pzie(s)
j

)1−Aij

⎫⎬⎭ .

In the M-step, �(s,t+1) is updated by

�(s,t+1) = arg max
�

Q(�|�(s,t), e(s)),

which has closed-form solutions as follows:

π
(s,t+1)

k = 1
n

n∑
i=1

τ
(s,t+1)

ik , (3)

P(s,t+1)

kl =

n∑
i=1

n∑
j=1

Aijτ
(s,t+1)

ik I(e(s)
j = l)

n∑
i=1

n∑
j=1

τ
(s,t+1)

ik I(e(s)
j = l)

,

for 1 ≤ k, l ≤ K. Once the EM algorithm has converged,
we let �(s+1) and

{
τ

(s+1)

il

}
take the values from the last EM
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Algorithm 1 Profile-Pseudo Likelihood Maximization Algo-
rithm.

Step 1: Initialize e(0) using spectral clustering with permuta-
tions (SCP).
Step 2: Calculate �(0) = (π (0), P(0)). That is, for 1 ≤ l, k ≤ K,

π
(0)

k = 1
n

n∑
i=1

I(e(0)
i = k), P(0)

kl =
n∑

i=1

n∑
j=1

AijI(e(0)
i =k)I(e(0)

j =l)

n∑
i=1

n∑
j=1

I(e(0)
i =k)I(e(0)

j =l)
.

Step 3: Initialize �(0,0) = (π (0,0), P(0,0)) = (π (0), P(0)).
repeat

repeat
Step 4: E-step: compute τ

(s,t+1)

ik using (2) for 1 ≤ k ≤ K
and 1 ≤ i ≤ n.
Step 5: M-step: compute π

(s,t+1)

k and P(s,t+1)

kl using (3) for
1 ≤ k, l ≤ K.

until the EM algorithm converges.
Step 6: Set �(s+1) and

{
τ

(s+1)

ik

}
to be the final EM update.

Step 7: Given �(s+1) and
{
τ

(s+1)

ik

}
, update e(s+1)

j , 1 ≤ j ≤ n,
using (4).

until the profile-pseudo likelihood converges.

update, respectively. Next, given �(s+1), we propose to update
e as follows:

e(s+1)
j = arg max

k∈{1,2,...,K}

n∑
i=1

K∑
l=1

τ
(s+1)

il

{
Aij log P(s+1)

lk

+(1 − Aij) log
(

1 − P(s+1)

lk

)}
. (4)

The update for e(s+1) is obtained separately for each node, which
can be carried out efficiently. As we discussed earlier, this update
is not guaranteed to maximize the pseudolikelihood function
LPL(�

(s+1), e; {ai}), which in fact is an intractable problem.
Nevertheless, it can be shown that the update in Equation (4)
leads to a nonnegative increment in the pseudolikelihood. This
gives the desirable ascent property, which we will formally state
in the following theorem.

Theorem 1. For a given initial labeling vector e(0), Algorithm 1
generates a sequence {�(s), e(s)} such that

LPL(�
(s), e(s); {ai}) ≤ LPL(�

(s+1), e(s+1); {ai}).

The proof of Theorem 1 is provided in the supplemental mate-
rial. Theorem 1 guarantees that the pseudolikelihood function
is non-decreasing at each iteration in Algorithm 1. Assuming
that the parameter space for � is compact, we arrive at the
conclusion that LPL(�

(s), e(s); {ai}) converges as the number of
iterations s increases. This is a desirable property that guarantees
the stability of the proposed algorithm. Since the pseudolike-
lihood function is not concave, Algorithm 1 is not guaranteed
to converge to the global optimum. Whether it converges to a
global or local solution depends on the initial value. In prac-
tice, we find that the initialization procedure in Algorithm 1
shows good performance, that is, we are able to achieve high

clustering accuracy in our simulation studies. To avoid local
solutions in real data applications, we recommend considering
multiple random initializations in addition to the initialization
in Algorithm 1.

Finally, we summarize the differences between our proposal
and the method in Amini et al. (2013). Both our method and
Amini et al. (2013) considered algorithms that iterate through
two parameter updating steps, namely the step that updates
the block model parameter � using EM and the step that
updates the membership label. However, the likelihood func-
tion is treated very differently in these two methods. As the
row and column labels are enforced to be the same in Amini
et al. (2013), a Poisson approximation is needed in the pseu-
dolikelihood calculation. The label e in Amini et al. (2013)
is treated as an initial in the EM estimation, and its value is
assigned heuristically in each iteration. As such, the resulting
procedure is not guaranteed to converge, as seen in Figure 1. In
comparison, our method decouples the row and column labels
(i.e., z and e), and does not require a Poisson approximation in
the pseudo likelihood calculation. When updating the column
labels e, we use LPL(�̂, e; {ai}) as the objective function that
guides our updating routine. The proposed node-wise update
enjoys the ascent property, which subsequently guarantees the
convergence of the algorithm (see Theorem 1). We also remark
that due to the differences in our problem formulation, our
theoretical analysis is nontrivial and new technical tools are
needed.

3. Consistency Results

In this section, we investigate the strong consistency of the
estimator obtained from one outer loop iteration (i.e., updating
the column labels e) of Algorithm 1, denoted as ĉ{e(0)}, where
e(0) is an initial of Algorithm 1. We first consider strong con-
sistency in the case of SBMs with two balanced communities,
and then extend our strong consistency result to SBMs with K
communities.

We first present the consistency result for directed SBMs with
two communities, fitted to directed networks, and then modify
the result to handle the more challenging case of undirected
SBMs, fitted to undirected networks. To separate the cases of
directed and undirected SBMs, we adopt different notations
for the corresponding adjacency matrices and edge-probability
matrices. First, for a directed SBM, we denote the adjacency
matrix as Ã and assume that its entries Ãij’s are mutually inde-
pendent given c, that is,

(directed) Ãij|c ∼ Bernoulli(̃Pcicj), for 1 ≤ i, j ≤ n. (5)

For an undirected SBM, we denote the adjacency matrix as A
and assume its entries Aij’s, i ≤ j, are mutually independent
given c, that is,

(undirected) Aij|c ∼ Bernoulli(Pcicj) and
Aij = Aji, for 1 ≤ i ≤ j ≤ n. (6)

Furthermore, we assume that the edge-probability matrix of the
directed SBM has the form

P̃ = 1
m

(
a b
b a

)
, (7)
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while that of the undirected SBM has the form

P = 2
m

(
a b
b a

)
− 1

m2

(
a2 b2

b2 a2

)
. (8)

Such a coupling between the directed and undirected models
makes it possible to extend the consistency result of the directed
SBM to the undirected case.

Given an initial labeling vector e(0), estimates â, b̂, and
(π̂1, π̂2), the estimator ĉ{e(0)} can be written as follows:

ĉj{e(0)} = arg max
k∈{1,2}

n∑
i=1

2∑
l=1

τ̂il
{

Aij log(̂Plk)

+(1 − Aij) log(1 − P̂lk
)}

, (9)

where τ̂il is defined as in Equation (2),̂P is defined as in Equation
(7) for directed SBMs and as in Equation (8) for undirected
SBMs, with a and b replaced by â and b̂, respectively. Here,
the estimates â, b̂ and (π̂1, π̂2) are outputs from the inner loop
(i.e., EM) iterations, and are in effect initials for the outer loop
calculation. Consistency of the inner loop (i.e., EM) outputs
â, b̂ and (π̂1, π̂2) can be established using the result in Amini
et al. (2013). In our theoretical analysis, we focus our efforts on
establishing strong consistency of the column labels e estimated
in the outer loop, given that the outer loop initials satisfy (â, b̂) ∈
Pδ

a,b in Equation (10) and π̂1 = π̂2 = 1/2.
For SBMs with two balanced communities, we make the

following assumption:

1. Assume that each community contains m = n/2 nodes and
π̂1 = π̂2 = 1/2.

The assumption that π̂1 = π̂2 = 1/2 is reasonable as the inner
loop outputs (π̂1, π̂2) are consistent estimators of (π1, π2) =
(1/2, 1/2), as shown in Amini et al. (2013). Without loss of
generality, let ci = 1 for i ∈ {1, . . . , m}, and ci = 2 for
i ∈ {m + 1, . . . , n}. Assume that e(0) ∈ {1, 2}n assigns equal
numbers of nodes to the two communities, that is, the initial
labeling vector is balanced. Let e(0) match with the truth on γ m
labels in each of the two communities for some γ ∈ (0, 1). We
assume γ m to be an integer. Next, let Eγ denote the set that
collects all such initial labeling vectors, that is,

Eγ =
{

e(0) ∈ {1, 2}n :
m∑

i=1
I(e(0)

i = 1) = γ m,

n∑
i=m+1

I(e(0)
i = 2) = γ m

}
.

Note that γ = 1/2 corresponds to “no correlation” between e(0)

and c, whereas γ = 0 and γ = 1 both correspond to perfect
correlation. In our analysis, we do not require knowing the value
of γ , or knowing which labels are matched. In Theorem 2, we
show that the amount of overlap γ can be any value, as long as
γ �= 1/2. Our goal is to establish strong consistency for ĉ{e(0)}.
For a constant δ > 1, we define Pδ

a,b as follows:

Pδ
a,b =

{
(â, b̂) :

â
b̂

I(a > b) + b̂
â

I(a < b) ≥ δ

}
. (10)

The set Pδ
a,b specifies that (â, b̂) has the same ordering as (a, b),

and the relative difference between the estimates â and b̂ is
lower bounded. Our next theorem considers the collection of
estimates (â, b̂) in Pδ

a,b.

Theorem 2. Assume (A) holds, δ > 1, γ ∈ (0, 1)\{ 1
2 } and

(a−b)2

(a+b)
≥ C log n for a sufficiently large constant C > 0. For a

directed SBM in Equation (5) with the edge-probabilities given
by Equation (7) with a �= b, we have that for any ε > 0, there
exists N > 0 such that for all n ≥ N, the following holds

P

{ ⋂
(â,b̂)∈Pδ

a,b

ĉ{e(0)} = c
}

≥ 1 −
{

ne− (a−b)2−4(a−b)ε+4ε2
4(a+b) + n(n + 2)e− (2γ−1)2(a−b)2

8(a+b)

}
,

for any e(0) ∈ Eγ , where ĉ{e(0)} = c means that they belong to
the same equivalent class of label permutations.

The proof of Theorem 2 is provided in the supplemental
material. It can be seen from Theorem 2 that the one-step
estimate ĉ{e(0)} for a directed SBM is a strongly consistent
estimate of c for any e(0) ∈ Eγ . Note that weak consistency
was established in Amini et al. (2013) under the assumption
that (a−b)2

(a+b)
→ ∞. In comparison, our result requires (a−b)2

(a+b)
≥

C log n to establish strong consistency. In the existing literature
on strong consistency, the condition λn

logn → ∞ is often com-
monly imposed (Bickel and Chen 2009; Zhao, Levina, and Zhu
2012), where λn denotes the average network degree. Specif-
ically, under the SBM setting considered in Bickel and Chen
(2009) and Zhao, Levina, and Zhu (2012), we have that a − b 	
λn and a + b 	 λn, where 	 denotes that the two quantities on
both sides are of the same order. In this case, λn

logn → ∞ implies
(a−b)2

(a+b)
≥ C log n for any constant C > 0.

Theorem 2 guarantees strong consistency for any e(0) ∈ Eγ .
In comparison, the weak consistency in Amini et al. (2013)
holds uniformly for all e(0) ∈ Eγ , even if it is derived from
the data. Indeed, e(0) is usually derived from data using ini-
tialization procedures such as the spectral clustering. For the
strong consistency result to apply, one may consider a data
splitting strategy following the method in Li, Levina, and Zhu
(2020). Specifically, we may sample a proportion of the node
pairs to produce an initial value e(0) and estimate ĉ(e(0)) using
the rest of the node pairs. In this case, e(0) is independent of the
data used for community detection and the result in Theorem
2 can be used to ensure strong consistency of ĉ(e(0)). In our
numerical studies, for simplicity we did not use data splitting,
while the simulation results show that the proposed method still
performs well. We also note that Theorem 2 can be adapted
to hold uniformly for all e(0) ∈ Eγ , if stronger conditions are
placed on γ and a, b. Specifically, if the misclassification ratio
of e(0) is, for example, O(1/(a + b)) and the condition on a, b
is strengthen to (a − b) �

√
n log n (i.e., average degree is at

least of order
√

n log n), then strong consistency in Theorem 2
holds uniformly for all such e(0), even if it is derived from
the data. This can be shown by combining the union bound
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argument and a Stirling approximation that gives log
(

n
nγ

)
≤

n log(en/nγ ), where nγ is the number of misclassified nodes.
The misclassification ratio of O(1/(a + b)) imposed above is
known to hold with high probability for spectral clustering (see,
e.g., Corollary 3.2 in Lei and Rinaldo (2015)).

Next, we consider the case of undirected SBMs. Let aγ =[
(1 −γ )a +γ b

]
I(γ > 1

2 )+ [
γ a + (1 −γ )b

]
I(γ < 1

2 ). We have
the following result on the strong consistency of ĉ{e(0)}.

Theorem 3. Assume (A) holds, δ > 1, γ ∈ (0, 1)\{ 1
2 } and

(a−b)2

(a+b)
≥ C log n for a sufficiently large constant C > 0. For

an undirected SBM in Equation (6) with the edge-probabilities
given by Equation (8) with 2(1 + ε)aγ ≤ ε|(1 − 2γ )(a − b)| for
some ε ∈ (0, 1), there exist ρ ∈ (0, 1) and N > 0, such that for
all n ≥ N, the following holds:

P

{ ⋂
(â,b̂)∈Pδ

a,b

ĉ{e(0)} = c
}

≥ 1 −
[

3ne− (
1−ρ

4 )2(a−b)2
4(a+b)

+ n(n + 2)

{
e− ( 1−ε

2 )2(2γ−1)2(a−b)2
4(a+b) + 2e− ε2/2

1+ε/2 aγ

}]
,

for any e(0) ∈ Eγ , where ĉ{e(0)} = c means that they belong to
the same equivalent class of label permutations.

The proof of Theorem 3 is provided in the supplemental
material. It can be seen that the one-step estimate ĉ{e(0)} for
an undirected SBM is a strongly consistent estimate of c, for
any e(0) ∈ Eγ . Given ε and γ , the condition 2(1 + ε)aγ ≤
ε|(1 − 2γ )(a − b)| places an upper bound on b/a. For example,
for ε = 1

3 and γ < 1
10 , the above condition is satisfied if

b/a ≤ (1 − 10γ )/(9 − 10γ ).
Strong consistency can be more desirable than weak con-

sistency, as it enables normal distribution based inference and
goodness-of-fit tests (see numerical studies in Section 5.2). For
example, consider a SBM with K = 2, π = (π1, π2) and
true community labels c = (c1, c2, . . . , cn). Suppose we can
construct a label vector ĉ(w) such that {ĉ(w)

i }n
i=1 are independent

with P(ĉ(w)
i �= ci) = 2pn for ci = 1 and P(ĉ(w)

i �= ci) = pn for
ci = 2, where pn = 1/ log n. Then it can be shown that ĉ(w) is
weakly consistent, with a misclassification ratio of Op(1/ log n),

but not strongly consistent to c. Let π̂w
1 =

n∑
i=1

I(ĉ(w)
i = 1)/n.

It holds that
√

n
{
π̂w

1 −
(
π1 + 1−3π1

log n

)} d→ N {0, π1(1 − π1)}
(See the proof in the supplemental material). Thus, the bias term
of π̂w

1 is O(1/ log n), which can be non negligible for inference.
On the other hand, for a strongly consistent estimator ĉ(s) =(

ĉ(s)
1 , ĉ(s)

2 , . . . , ĉ(s)
n
)

, letting π̂ s
1 =

n∑
i=1

I(ĉ(s)
i = 1)/n, it holds that

√
n
{
π̂ s

1 − π1
} d→ N {0, π1(1 − π1)}.

Next, we consider the more general case of directed and
undirected SBMs with K communities. Similar to Assumption
(A), we make the following assumption:

1. Assume that each community contains m = n/K nodes and
π̂k = 1/K.

Let the edge-probability matrix of the directed SBM be

P̃kl = a
m

1(k = l) + b
m

1(k �= l), (11)

and that of the undirected SBM be

Pkl =
(

2a
m

− a2

m2

)
1(k = l) +

(
2b
m

− b2

m2

)
1(k �= l), (12)

for k, l = 1, . . . , K. Without loss of generality, let ci = k for
i ∈ {(k − 1)m + 1, . . . , km} for k = 1, . . . , K. Let Eγ denote the
set that collects all initial labeling vectors such that

Eγ =
⎧⎨⎩e(0) ∈ {1, . . . , K}n :

km∑
i=(k−1)m+1

I(e(0)
i = k) = γkm,

n∑
i=1

I(e(0)
i = k) = m, k = 1, . . . , K

}
,

where γ = (γ1, . . . , γK). Corollaries 1 and 2 establish the strong
consistency of profile-pseudo likelihood estimators for directed
and undirected SBMs, respectively.

Corollary 1. Assume (B) holds, δ > 1, min {γ1, γ2, . . . , γK} ∈
( 1

2 , 1) and (a−b)2

(a+b)
≥ C log n for a sufficiently large constant C >

0. For a directed SBM in Equation (5) with the edge-probabilities
given by Equation (11) with a �= b, we have that for each ε > 0,
there exists N > 0 such that for all n ≥ N, the following holds:

P

{ ⋂
(â,b̂)∈Pδ

a,b

ĉ{e(0)} = c
}

≥ 1 −
{
(K − 1)ne− (a−b)2−4(a−b)ε+4ε2

4(a+b)

+ (10K − 8)n2

K

K∑
k=1

K∑
l=1

e− (γk+γl−1)2(a−b)2
8(a+b)

}
,

for any e(0) ∈ Eγ , where ĉ{e(0)} = c means that they belong to
the same equivalent class of label permutations.

Corollary 2. Assume (B) holds, δ > 1, min {γ1, γ2, . . . , γK} ∈
( 1

2 , 1) and (a−b)2

(a+b)
≥ C log n for a sufficiently large constant

C > 0. For an undirected SBM in Equation (6) with the edge-
probabilities given by (12) with 2(1 + ε)aγk ≤ ε(γk + γl −
1)(a − b) for all 1 ≤ k, l ≤ K and some ε ∈ (0, 1), where
aγk = (1 − γk)a + γkb, there exist ρ ∈ (0, 1) and N > 0, such
that for all n ≥ N, the following holds

P

{ ⋂
(â,b̂)∈Pδ

a,b

ĉ{e(0)} = c
}

≥ 1 −
[

3(K − 1)ne− (
1−ρ

4 )2(a−b)2
2(a+b)

+ (10K − 8)n2

K

K∑
k=1

K∑
l=1

{
e− ( 1−ε

2 )2(γk+γl−1)2(a−b)2
6(a+b) + 2e− 3ε2aγk

8(4+ε)

}]
,

for any e(0) ∈ ε
γ
n , where ĉ{e(0)} = c means that they belong to

the same equivalent class of label permutations.

The proofs of Corollaries 1 and 2 follow very similar steps
as in the proofs of Theorems 2 and 3, respectively. We omit
presenting the details.
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4. Extensions

In this section, we study two useful extensions of the pro-
posed method. First, we consider the case of fitting the degree
corrected stochastic block model using the proposed profile-
pseudo likelihood method. Second, we consider the case of
fitting the bipartite stochastic block model using the proposed
profile-pseudo likelihood method (see Section A5 in the supple-
mental material).

It has often been observed that real-world networks exhibit
high degree heterogeneity, with a few nodes having a large num-
ber of connections and the majority of the rest having a small
number of connections. The stochastic block model, however,
cannot accommodate such degree heterogeneity. To incorporate
the degree heterogeneity in community detection, Karrer and
Newman (2011) proposed the degree-corrected SBM. Specifi-
cally, conditional on the label vector c, it is assumed that the
edge variables Aij for all i ≤ j are mutually independent Poisson
variables with

E[Aij|c] = θiθjλcicj ,
where � = [λkl] is a K × K symmetric matrix and θ =
(θ1, θ2, . . . , θn) is a degree parameter vector, with the additional

constraint
n∑

i=1
θi/n = 1 that ensures identifiability (Zhao, Lev-

ina, and Zhu 2012).
Define � = (π , �, θ). To fit the DCSBM to an observed adja-

cency matrix A, we define the following log-pseudolikelihood
function:

�DC
PL (�, e; {ai}) =

n∑
i=1

log

⎧⎨⎩
K∑

l=1
πl

n∏
j=1

e−θiθjλlej (θiθjλlej)
Aij

⎫⎬⎭ .

Let di = ∑n
j=1 Aij, 1 ≤ i ≤ n. A profile-pseudo likelihood

algorithm that maximizes �DC
PL (�, e; {ai}) is described in Algo-

rithm 2. At step 4, we update the conditional probabilities for
the row labels by

τ
(s,t+1)

ik =

n∏
j=1

π
(s,t)
k e

−θ
(s,t)
i θ

(s,t)
j λ

(s,t)
ke(s)

j

{
θ

(s,t)
i θ

(s,t)
j λ

(s,t)
ke(s)

j

}Aij

K∑
l=1

n∏
j=1

π
(s,t)
l e

−θ
(s)
i θ

(s,t)
j λ

(s,t)
le(s)

j

{
θ

(s,t)
i θ

(s,t)
j λ

(s,t)
le(s)

j

}Aij
. (13)

At step 5, we update the parameters by sequentially solving the
following optimization problems:
(π (s,t+1), �(s,t+1)) = arg max

(π ,�)
Q(π , �, θ (s,t)|�(s,t), e(s)),

θ
(s,t+1)
i = arg max

θi
Q(π (s,t+1), �(s,t+1), θ(s,t+1)

1 , . . . , θ(s,t+1)
i−1 , θi,

θ
(s,t)
i+1 , . . . , θ(s,t)

n |�(s,t), e(s)).

Here, the objective function Q(�|�(s,t), e(s)) is defined as

Q(�|�(s,t), e(s)) = Ez|{ai};�(s,t),e(s)

{
log f

(
{ai}, z; �, e(s)

)}
,

where z = (z1, . . . , zn)� denotes the row label vector and

f ({ai}, z; �, e(s)) =
n∏

i=1

⎡⎢⎢⎢⎣πzi

n∏
j=1

e
−θiθjλzie(s)

j

{
θiθjλzie(s)

j

}Aij

Aij!

⎤⎥⎥⎥⎦ .

Algorithm 2 DCSBM Profile-Pseudo Likelihood Maximization
Algorithm.

Step 1: Initialize e(0) using spectral clustering with permuta-
tions (SCP).
Step 2: Calculate �(0) = (π (0), �(0), θ (0)). That is, for 1 ≤
l, k ≤ K, 1 ≤ i ≤ n,

π
(0)

k = 1
n

n∑
i=1

I(e(0)
i = k), θ

(0)
i ∝ di,

λ
(0)

kl =

n∑
i=1

n∑
j=1

AijI(e(0)
i = k)I(e(0)

j = l)

n∑
i=1

n∑
j=1

I(e(0)
i = k)I(e(0)

j = l)θ(0)
i θ

(0)
j

.

Step 3: Initialize �(0,0) = (π (0,0), �(0,0), θ (0,0)) = (π (0),
�(0), θ (0)).
repeat

repeat
Step 4: E-step: compute τ

(s,t+1)

ik using (13) for 1 ≤ k ≤ K
and 1 ≤ i ≤ n.
Step 5: CM-step: compute π (s,t+1), �(s,t+1), θ (s,t+1). For
1 ≤ k, l ≤ K, set

π
(s,t+1)

k =
n∑

i=1
τ

(s,t+1)

ik /n,

λ
(s,t+1)

kl =

n∑
i=1

n∑
j=1

τ
(s,t+1)

ik I(e(s)
j = l)Aij

n∑
i=1

n∑
j=1

τ
(s,t+1)

ik I(e(s)
j = l)θ(s,t)

i θ
(s,t)
j

,

Letting g(s,t+1)
ij =

K∑
k,l=1

τ
(s,t+1)

ik I(e(s)
j = l)λ(s,t+1)

kl , for 1 ≤
i ≤ n, set

θ
(s,t+1)
i =

(
−h(s,t+1)

i +
√

h(s,t+1)
i

2+8dig(s,t+1)
ii

)/
4g(s,t+1)

ii ,

where h(s,t+1)
i =

i−1∑
j=1

θ
(s,t+1)
j g(s,t+1)

ij +
n∑

j=i+1
θ

(s,t)
j g(s,t+1)

ij .

until the ECM algorithm converges.
Step 6: Set �(s+1) to be the final ECM update.
Step 7: Given �(s+1), update e(s+1)

j , 1 ≤ j ≤ n, using

e(s+1)
j = arg max

k∈{1,2,...,K}
n∑

i=1

K∑
l=1

{
−θ

(s+1)
i θ

(s+1)
j λ

(s+1)

lk + Aij log(λ(s+1)

lk )
}

τ
(s+1)

il .

until the profile-pseudo likelihood converges.

The inner loop of Algorithm 2, that is, Steps 4 and 5, is
different from that in Algorithm 1, as it considers a condi-
tional EM (ECM) update. Specifically, the objective function
Q(�|�(s,t), e(s)) in the M-step, that is, Step 5, which solves for
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block parameters λkl’s and degree parameters θi’s, is nonconvex
and does not have closed form solutions. Hence, directly opti-
mizing it using numerical techniques can be computationally
costly and is not ensured to find the global optimum. The
ECM algorithm replaces the challenging optimization problem
in the M-step with a sequence of alternating updates, each of
which has a closed-form solution. It is easy to implement and
enjoys the desirable ascent property (Meng and Rubin 1993).
Consequently, Algorithm 2 has convergence guarantees, which
improves over Amini et al. (2013).

We also note that in our profile-pseudo likelihood approach,
while the conditional distribution (on node degrees) of the
Poisson variables is multinomial, the multinomial coefficient
(i.e., the di!

bi1!bi2!···biK ! factorial term) in the density function
involves the column labels (in bik’s). As such, optimizing for
the column labels in the outer loop becomes highly challenging.
In Algorithm 2, we work with the pseudolikelihood without
conditioning on node degrees and it requires estimating the
degree parameters in the M-step. This is different from that in
Amini et al. (2013).

5. Simulation Studies

In this section, we carry out simulation studies to investigate
the finite sample performance of our proposed profile-pseudo
likelihood method (referred to as PPL), and to compare with
existing solutions including the spectral clustering with permu-
tations (referred to as SCP) and the pseudolikelihood method
(referred to as PL) proposed in Amini et al. (2013). Both SCP
and PL are implemented using the code provided by Amini et al.
(2013). We also compare with the strongly consistent majority
voting method proposed in Gao et al. (2017) (see Section A6 in
the supplemental material).

We consider two evaluation criteria. The first one is the
normalized mutual information (NMI), which measures the
distance between the true labeling vector and an estimated label-
ing vector. The NMI takes values between 0 and 1, and a larger
value implies a higher accuracy. The second one is the CPU
running time, which measures the computational cost. Note the

reported running time does not include the initialization step
(see Section A6 in the supplemental material and discussions in
Section 7). All methods are implemented in Matlab and run on
a single processor of an Intel(R) Core(TM) i7-4790 CPU 3.60
GHz PC.

5.1. SBM

In this section, we simulate networks from SBMs. Three differ-
ent settings are considered. In Setting 1, we evaluate the conver-
gence of PPL and PL; in Setting 2, we compare the performance
of PPL, SCP, and PL when the networks are small and dense; in
Setting 3, we compare the three methods when the networks are
large and sparse.

Setting 1: In this simulation, we evaluate the convergence
performance of PPL and PL with varying initial labeling vectors.
We simulate from SBMs with n = 500 nodes that are divided
into K equal sized communities, and the within/between com-
munity connecting probabilities are Pkl = p1 + p2 × 1(k =
l), k, l = 1, . . . , K. We consider (K, p1, p2) = (2, 0.13, 0.07), and
(K, p1, p2) = (5, 0.10, 0.13). Both the PPL and PL algorithms
are considered to have converged if the change of the latest
update (relative to the previous one) is less than 10−6 or if the
number of outer iterations exceeds 60. We let the NMI of the
initial labeling vector vary from 0.1 to 0.5. All simulations are
repeated 100 times. The proportion of convergence for PPL and
PL are presented in Figure 2. It is seen that the PL does not have
a satisfactory convergence performance. One example (in the
case of K = 2) of the convergence of PPL and nonconvergence
of PL is shown in Figure 1, where it is observed that the PL
algorithm did not converge, and the final estimate has a smaller
log pseudolikelihood when compared to the initial value.

Setting 2: In this simulation, we compare the performance of
SCP, PL, and PPL on small-scale and dense networks. The PL
method is not expected to perform well in this setting due to the
relatively large Poisson approximation error. We acknowledge
that many networks in real applications are large and/or sparse,
and we note that here we use simulated examples to investigate
a limitation of the PL method. We simulate from SBMs with n

Figure 2. Proportion of convergence of PPL and PL with initial labels of varying NMI.
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Figure 3. NMI and computing time of PPL and PL with varying network size n.

nodes that are divided into K = 2 equal sized communities,
and the within/between community connecting probabilities
are Pkl = p1 + p2 × 1(k = l), k, l = 1, . . . , K. We consider
(p1, p2) = (0.84, 0.06). Both PPL and PL are initialized by SCP.
Figure 3 reports the NMI from the three methods based on 100
replications. It is seen that PPL outperforms the PL in terms of
both community detection accuracy (when n < 1000) and com-
putational efficiency. The unsatisfactory performance of the PL
method when n < 1000 is due to the errors from approximating
binomial random variables with Poisson random variables. This
approximation is not expected to work well when p1 (or p2) is
large and when n is small (Hodges and Le Cam 1960). Also note
that the PL method may perform worse than the initial labels, as
its iterations do not enjoy the ascent property. It can also be seen
that as n increases, the performance of PL improves notably.

Setting 3: In this simulation, we compare the performance
of SCP, PL, and PPL on large-scale and sparse networks. We
consider similar simulation settings as in Amini et al. (2013).
As in Decelle et al. (2011), the edge-probability matrix P is
controlled by the following two parameters: the “out-in-ratio” β ,
varying from 0 to 0.2, and the weight vector ω, determining the
relative degrees within communities. We set ω = (1, 1, 1). Once
β = 0, P∗ is set to be a diagonal matrix diag(ω), while otherwise
we set the diagonal elements of P∗ to be β−1ω and set all the off-
diagonal ones to 1. Then, the overall expected network degree
is set to be λ, which varies from 3 to 5. Finally, we rescale P∗ to
obtain this expected degree, giving the resulting P as follows:

P = λ

(n − 1)(πTP∗π)
P∗, (14)

which generates sparse networks, since Pkl = O(1/n). In this
simulation study, both PL and PPL are initialized by SCP. We let
K = 3 and π = (0.2, 0.3, 0.5). We consider three scenarios: 1)
varying β while setting λ = 5 and n = 4000, 2) varying λ while
setting β = 0.05, and n = 4000, and 3) varying n while setting
λ = 5 and β = 0.05. Figure 4 reports the NMI from the three
methods and the computing time from PPL and PL, based on
100 replications. We note the reported running times for PPL
and PL do not include the initialization step. For comparison,
when λ = 5, β = 0.05, and n = 106, the SCP initialization

step takes less than 100 sec (see Section A6 in the supplemental
material). It is seen that PPL outperforms both SCP and PL in
terms of community detection accuracy. Moreover, PPL consis-
tently outperforms PL in terms of computational efficiency.

5.2. Goodness-of-Fit Test and Normality of Plug-in
Estimators

To evaluate goodness of fit, we consider the maximum entry-
wise deviation-based testing procedure in Hu et al. (2020b). The
authors showed that the distribution of the test statistic, denoted
by Tn and calculated with a strongly consistent community label,
converges to a Gumbel distribution. In this simulation study, we
consider a SBM with K = 3, π = (0.2, 0.3, 0.5), and Pkl =
0.12 + 0.08 × I(k = l), and investigate the distribution of Tn
calculated using estimates from PPL and SCP, respectively. The
results over 1000 replications are shown in Figure 5. It is seen
that the sample null distribution of Tn calculated with PPL is
very close to the limiting distribution while that calculated with
SCP deviates from the limit considerably. This is due to that Tn
in Hu et al. (2020b) is calculated based on maximum entry-wise
deviation and as such, the misclassified nodes in SCP, albeit not
many, may much inflate the test statistic. With the refinement of
PPL, the test statistic is seen to have a sample null distribution
close to the theoretical limit, ensuring a well-controlled test size.

To examine normality of plug-in estimators, we consider a
SBM with K = 3, π = (0.2, 0.3, 0.5), Pkl = 0.12 + 0.08 ×
I(k = l), and n = 800. We consider the empirical distribution
of π̂1, π̂2 and π̂3 calculated using labels produced by PPL and
SCP, respectively. The results over 1000 replications are shown
in Figure 6. It is seen that the empirical distributions calculated
with PPL are very close to the limiting distributions while those
calculated with SCP deviate, especially for π̂1 and π̂3, from the
theoretical limits.

5.3. DCSBM

In this section, we evaluate the performance of the profile-
pseudo likelihood method under the DCSBM, referred to as
DC-PPL. We fix K = 3, n = 1200, π = (0.2, 0.3, 0.5) and let
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Figure 4. Comparisons of the NMI and computing time from SCP, PL, and PPL under different settings. The three rows correspond to the following three scenarios
respectively: (1) varying β while setting λ = 5 and n = 4000, (2) varying λ while setting β = 0.05, and n = 4000, and (3) varying n while setting λ = 5 and β = 0.05.

Figure 5. Null densities of the test statistic with n = 600 (left plot) and n = 1200 (right plot). The blue dashed lines, red dash-dotted lines, and black solid lines show the
densities under SCP, PPL, and the theoretical limit, respectively.

P = 10−2 ×[
JK,K + diag(2, 3, 4)

]
, where JK,K is a K by K matrix

where every element is equal to one. The degree parameters
{θi}n

i=1 are generated from (Zhao, Levina, and Zhu 2012), that is,

P (θi = mx) = P (θi = x) = 1/2 with x = 2
m + 1

,

which ensures that E(θi) = 1. We consider m = 2, 4, 6. Given c
and θ , the edge variables Aij’s are independently generated from
a Bernoulli distribution with parameters θiθjPcicj , 1 ≤ i ≤ j ≤ n.

We compare DC-PPL with SCP as well as CPL, an extension
of PL proposed for networks with degree heterogeneity in Amini
et al. (2013). The results are summarized in Figure 7, based on
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Figure 6. Empirical distributions of π̂1, π̂2, and π̂3. The blue dashed lines, red dash-dotted lines, and black solid lines show the densities under SCP, PPL, and the theoretical
limit, respectively.

Figure 7. Comparison of SCP, CPL, DC-PPL under DCSBM with varying m.

100 replications. We can see both DC-PPL and CPL outperform
SCP, and DC-PPL performs better than CPL in terms commu-
nity detection accuracy.

6. Real-World Data Examples

6.1. Political Blogs Data

In this subsection, we apply our proposed method to the net-
work of political blogs collected by Adamic and Glance (2005).
The nodes in this network are blogs on the U.S. politics and
the edges are hyper-links between these blogs with directions
removed. This dataset was collected right after the 2004 presi-
dential election and demonstrates strong divisions. In Adamic
and Glance (2005), all the blogs were manually labeled as liberal
or conservative, and we take these labels as the ground truth.
As in Zhao, Levina, and Zhu (2012), we focus on the largest
connected component of the original network, which contains
1222 nodes, 16,714 edges and has the average degree of approx-
imately 27.

To perform community detection, we consider five different
methods, namely, PL, PPL, SCP, CPL, and DC-PPL. We com-
pute the NMI between the estimated community labels with the
so-called ground truth labels. Figure 8 shows the community
detection results from the five different methods. It is seen
that PPL and PL divide the nodes into two communities, with
low degree and high degree nodes, respectively. Both the PPL
and PL estimates have NMI close to zero as neither of these
two methods take into consideration the degree heterogeneity.
The partition obtained using SCP has NMI=0.653, while that

from the CPL has NMI=0.722 and that from the DC-PPL has
NMI=0.727. Both CPL and DC-PPL achieve good performance
in this application.

6.2. International Trade Data

In this subsection, we apply our proposed method to the net-
work of international trades. The data contain yearly interna-
tional trades among n = 58 countries from 1981 to 2000 (West-
veld and Hoff 2011). Each node in the network corresponds to a
country and an edge (i, j) measures the amount of exports from
country i to country j for a given year; see Westveld and Hoff
(2011) for details. Following Saldana, Yu, and Feng (2017), we
focus on the international trade network in 1995 and transform
the directed and weighted adjacency network to an undirected
binary network. Specifically, let Wij = Tradeij + Tradeji, and set
Aij = 1 if Wij ≥ W0.5, and Aij = 0 otherwise. Here, Tradeij
records the amount of exports from country i to country j and
W0.5 denotes the 50th percentile of {Wij}1≤i<j≤n. Using different
model selection procedures, both Saldana, Yu, and Feng (2017)
and Hu et al. (2020a) selected the number of SBM communities
to be K = 3 for this dataset. Saldana, Yu, and Feng (2017)
suggested that larger community numbers such as K = 7 are
also reasonable and they tended to provide finer solutions. We
apply PPL to this network with K = 3 and the community
detection result is summarized in Table 1. It is seen that the
three communities mostly correspond to developing countries
in South America with low GDPs, countries with high GDPs
and industrialized European and Asian countries with medium-
level GDPs, respectively.
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Figure 8. Community detection on the political blogs data using PL, PPL, SCP, CPL, and DC-PPL, respectively. The sizes of nodes are proportional to the their degree, and
the color corresponds to different community labels.

Table 1. Community detection result on the international trade data using PPL
with K = 3.

Group Countries

1 Algeria, Barbados, Bolivia, Costa Rica, Cyprus, Ecuador, El Salvador,
Guatemala, Honduras, Iceland, Jamaica, Mauritius, Nepal, Oman,
Panama, Paraguay, Peru, Trinidad and Tobago, Tunisia, Uruguay,
Venezuela

2 Belgium, Brazil, Canada, France, Germany, Italy, Japan, South Korea,
Mexico, Netherlands, Spain, Switzerland, United Kingdom, United
States

3 Argentina, Australia, Austria, Chile, Colombia, Denmark, Egypt, Finland,
Greece, India, Indonesia, Ireland, Israel, Malaysia, Morocco, New
Zealand, Norway, Philippines, Portugal, Singapore, Sweden, Thailand,
Turkey

To evaluate goodness of fit, we consider the maximum entry-
wise deviation based testing procedure (Hu et al. 2020b) that
we investigated in Section 5.2. The community labels identified
using SCP under K = 3 gives a test statistic value of 52.13 with
a p-value less than 10−10, suggesting a lack of fit. On the other
hand, the community labels identified by PPL, initialized using
SCP under K = 3, gives a test statistic of 4.59 with a p-value of
0.03. Therefore, the goodness-of-fit test for PPL under K = 3
is not rejected at the significance level of 0.01. It is also worth
noting that when K = 4, PPL gives a test statistic of 2.38 with
a p-value of 0.08 while SCP gives a p-value less than 10−3. It

is seen through this data example that refinement of the initial
clustering solution can be useful in inferential tasks such as the
goodness-of-fit test.

7. Discussion

In this article, we propose a new profile-pseudo likelihood
method for fitting SBMs to large networks. Specifically, we
consider a novel approach that decouples the membership labels
of the rows and columns in the likelihood function, and treat
the row labels as a vector of latent variables. Correspondingly,
the likelihood can be maximized in an alternating fashion over
the block model parameters and over the column community
labels. Our proposed method retains and improves on the com-
putational efficiency of the pseudolikelihood method, performs
well for both small- and large-scale networks, and has provable
convergence guarantee. We show that the community labels
(i.e., column labels) estimated from our proposed method enjoy
strong consistency, as long as the initial labels have an overlap
with the truth beyond that of random guessing.

In our approach, we consider spectral clustering as the
initialization method, which requires computing K leading
eigenvectors. In real-world applications, many implementations
of eigen-decomposition are scalable, such as the PageRank
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algorithm adopted in Google search (Page et al. 1999). We
also note that our method needs not to limit the initialization
algorithm to spectral clustering. For large-scale networks, one
may consider the FastGreedy method by Clauset, Newman, and
Moore (2004), which has a complexity of O(n log2 n) or the
Louvain algorithm by Blondel et al. (2008), which has a com-
plexity of O(n log n) (Yang, Algesheimer, and Tessone 2016).
These fast algorithms, to our best knowledge, may not have
theoretical guarantees on their performances. However, they
have been validated empirically by many across various fields
(Yang, Algesheimer, and Tessone 2016) and can be considered as
an initialization method when spectral clustering is not feasible.

Although we focus on SBMs and DCSBMs in this work, we
envision the idea of simplifying the block model likelihoods by
decoupling the membership labels of rows and columns can
be applied to other network block model problems, such as
mixed membership SBMs (Airoldi et al. 2008), block models
with additional node features (Zhang, Levina, and Zhu 2016)
and SBMs with dependent edges (Yuan and Qu 2018). We plan
to investigate these directions in our future work.

The code is publicly available at Github (https://github.com/
WangJiangzhou/Fast-Network-Community-Detection-with-
Profile-Pseudo-Likelihood-Methods).

Supplementary Materials

The supplementary materials collect all technical proofs, additional com-
putational details and simulation results.
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