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Abstract The problem of estimating high-dimensional Gaussian graphical models has gained much attention

in recent years. Most existing methods can be considered as one-step approaches, being either regression-based

or likelihood-based. In this paper, we propose a two-step method for estimating the high-dimensional Gaussian

graphical model. Specifically, the first step serves as a screening step, in which many entries of the concentration

matrix are identified as zeros and thus removed from further consideration. Then in the second step, we focus on

the remaining entries of the concentration matrix and perform selection and estimation for nonzero entries of the

concentration matrix. Since the dimension of the parameter space is effectively reduced by the screening step,

the estimation accuracy of the estimated concentration matrix can be potentially improved. We show that the

proposed method enjoys desirable asymptotic properties. Numerical comparisons of the proposed method with

several existing methods indicate that the proposed method works well. We also apply the proposed method to

a breast cancer microarray data set and obtain some biologically meaningful results.
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1 Introduction

The problem of estimating high-dimensional Gaussian graphical models has gained much attention in

recent years. The basic model assumes that the observations are independent and identically distributed

samples from a multivariate Gaussian distribution, and the goal is to infer the conditional dependence

structure among the variables, which can be implied from the inverse of the covariance matrix, also known

as the concentration matrix, of the multivariate Gaussian distribution. Specifically, zero entries of the

concentration matrix correspond to conditionally independent pairs of variables, and vice versa. This is

also referred as the covariance selection problem in the literature [6].

Many methods have been proposed in the past 10–15 years to address the problem in the high-

dimensional scenario, and most of them roughly fall into two categories. One type of methods is based

on penalized likelihood. For example, Yuan and Lin [37] and Banerjee et al. [1] proposed to use the
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LASSO (least absolute shrinkage and selection operator) penalty on off-diagonal elements of the con-

centration matrix to regularize the Gaussian log-likelihood, while Fan et al. [7] and Lam and Fan [16]

considered to use the smoothly clipped absolute deviation (SCAD) penalty [8]. Friedman et al. [11] and

Yuan [36] developed efficient algorithms to maximize the LASSO penalized log-likelihood; the former

is often referred as the GLASSO (graphical LASSO). Rothman et al. [29] and Ravikumar et al. [28]

studied theoretical properties of the GLASSO, while Lam and Fan [16] did the same for SCAD penalized

log-likelihood. Another type of methods is based on regularized regression. For example, Meinshausen

and Bühlmann [19] proposed the neighborhood selection method, in which each variable is regressed on

other variables using LASSO, and the zero/nonzero structure of the concentration matrix can be inferred

by using the estimated regression coefficients. Peng et al. [25] proposed the sparse partial correlation

estimation (SPACE) method by piling the separate regressions into one single regression and showed that

the SPACE method performs well in both nonzero partial correlation selection and the identification of

hub variables.

In this paper, we propose a two-step method, where the first step serves as a screening step, in which

a significant amount of entries of the concentration matrix are identified as zeros, and then in the second

step, we restrict covariance selection only on the reduced parameter space. Since the parameter space

has been reduced, we anticipate the final estimate of the concentration matrix is improved over the above

mentioned one-step approaches.

The rest of the paper is organized as follows. Section 2 presents the proposed method and Section 3

shows its theoretical properties. Section 4 contains numerical results, including both simulation studies

and a data example. Section 5 summarizes the paper. All proofs are in Appendix A.

2 A two-step method for estimating high-dimensional Gaussian graphical
models

We focus on the Gaussian graphical model. Specifically, we consider p random variables that follow a

multivariate Gaussian distribution

X = (X1, . . . , Xp) ∼ Np(0,Σ),

where Σ is a p× p positive-definite covariance matrix. We use Θ to denote the concentration matrix, i.e.,

Θ = (θjj′)j,j′=1,...,p = Σ−1. We note that the dimension p of the concentration matrix is allowed to grow

as n increases. However, for notational simplicity, we do not index the parameters with n.

The structure of the concentration matrix Θ can be represented by using an undirected graph G =

(V, S), where V = {1, . . . , p} is the set of nodes corresponding to the random variables X1, . . . , Xp and S

is a set of undirected edges representing the conditional dependence relationships between the variables.

Specifically, if variables Xj and Xj′ are conditionally independent given the rest of the variables, nodes j

and j′ are not linked in the graph; otherwise they are connected.

It is well known that the elements in Θ can be associated with a set of regression coefficients [13].

Specifically, under the Gaussianity assumption, the variable Xj can be represented as follows:

Xj =
∑
j ̸=j′

Xj′βjj′ + ϵj , (2.1)

where ϵj ∼ N(0, σ2
j ) is independent of Xj′ , j′ ̸= j, and σ2

j = 1/θjj . Furthermore, it is true that

βjj′ = −θjj′/θjj . Thus, for the Gaussian graphical model, we have

(j, j′) and (j′, j) ∈ S ⇔ θjj′ , θjj′ ̸= 0 ⇔ βjj′ , βjj′ ̸= 0. (2.2)

One natural question is then how to efficiently and correctly recover the graphical structure by drawing

upon the results in (2.2). In general, as mentioned in the introduction section, there are two types of

methods. One type of methods is based on sparse regression techniques, utilizing the relationship in (2.1)
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and the LASSO penalty, e.g., the neighborhood selection method [19] and the SPACE method [25]. The

other type of methods is based on regularized likelihood, by using the Gaussianity assumption and certain

sparse penalty, e.g., the GLASSO algorithm [11] and the SCAD method [7]. In this section, we propose

a new two-step approach, which involves an initial screening step and a selection and estimation step.

In the first step, we apply a graph learning algorithm to identify most unlinked variable pairs and set

the corresponding θ̂jj′ ’s to zeros; if Θ is sparse, this step can effectively reduce the dimension of the

parameter space. In the second step, we restrict the estimation of Θ within the reduced space obtained

from the first step. Since the parameter space is reduced for the second step, the statistical estimation

accuracy of Θ is expected to be possibly better for the two-step estimate than for the one-step estimate.

Similar ideas have been utilized in the regression setting, such as [9,18], but have not been explored with

graphical models. Specifically, the proposed algorithm proceeds as follows:

A two-step algorithm for estimating the concentration matrix:

Step 1 (Screening). Denote the j-th variable of the i-th observation as xij , i = 1, . . . , n. Let

{β̂jj′} = argmin
1

2n

p∑
j=1

n∑
i=1

(xij −
∑
j′ ̸=j

xij′βjj′)
2 + λ1

∑
j ̸=j′

|βjj′ |.

Let Â be the nonzero index set of β̂jj′ , i.e., Â = {(j, j′) : β̂jj′ ̸= 0 or β̂j′j ̸= 0, j ̸= j′}.
Step 2 (Selection and estimation). Let Θ̃ be the maximum likelihood estimate of Θ based on Â. Fur-

thermore, let wjj′ = 1/|θ̃jj′ | if (j, j′) ∈ Â. Let

MÂ = {Θ ∈ Rp×p; Θ ≻ 0 and θjj′ = 0 for all (j, j′) /∈ Â, j ̸= j′}.

Set Θ̂ = argminΘ∈MÂ
{− log |Θ| + tr(ΘΣ̂) + λ2

∑
(j,j′)∈Â wjj′ |θjj′ |}, where Σ̂ is the sample covariance

matrix.

Note λ1 > 0 and λ2 > 0 are tuning parameters controlling the amount of regularization. In the first

step, we choose to use the regularized regression based neighborhood selection method, as it has been

demonstrated to be effective at identifying zero elements in the concentration matrix [19,25]; furthermore,

we use the same tuning parameter λ1 for the p separate regressions, which reduces both the amount of

tuning and the variability of the estimate. In general, due to the nature of the LASSO optimization, we

have Cardinality(Â) 6 n×p. In the second step, we choose to use the weighted graphical LASSO method

as the parameter space has been reduced, and the likelihood based method is expected to perform better

than sparse regression based methods in the low-dimensional setting. Note for variable pairs that are

identified as conditionally uncorrelated in the first step, i.e., β̂jj′ = β̂j′j = 0, we set the corresponding

θ̂jj′ = θ̂j′j to zeros. Furthermore, for other variable pairs, we assign different penalties on different

entries of the concentration matrix when using the graphical LASSO, which is also expected to yield

more accurate estimate.

It should also be noted that the proposed method is related to but different from the adaptive graphical

LASSO method [7] and the Gelato (graph estimation with LASSO and thresholding) method [39], which

are also two-step methods. In the adaptive graphical LASSO, different weights are also assigned to

different entries of the concentration matrix; however, all weights are finite, and hence the dimension of

the parameter space is not reduced in the second step, and consequently, the estimate does not benefit

from the bias-variance tradeoff as much as the proposed method. In the Gelato method, the first step also

reduces the parameter space by setting certain θ̂jj′ ’s to zeros; however, in the second step, the method

simply fits the maximum likelihood estimation to the rest entries of the concentration matrix, and thus

the estimated graph structure is completely determined by the first step; in other words, the first step is

responsible for selecting the graph structure, while the second step is responsible for estimating the value

of nonzero entries of Θ̂. While in the proposed method, the first step serves for the purpose of screening,

i.e., setting a significant amount of entries of the concentration matrix to zeros, and the second step does

both selection and estimation, on a much reduced parameter space. As we will see in numerical studies,

these differences turn out to be crucial and help the proposed method gain better performance than both

the adaptive graphical LASSO and the Gelato methods.
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3 Theoretical results

Suppose the variables are centered and normalized such that 1
n

∑n
i=1 x

2
ij = 1 for j = 1, . . . , p. Let Sj

be the set of indices corresponding to variables that are conditionally correlated with the j-th variable,

and ΘSj denotes the |Sj | × |Sj | submatrix of Θ. To present our theoretical results, we need the following

assumptions:

(C.1) For j = 1, . . . , p, it holds that Cardinality(Sj) 6 l0, where l0 = O(nγ) for some 0 < γ < 1.

(C.2) The following condition holds for a positive constant κ1:

κ1 , min
J⊆{1,...,p},|J|6l0

min
∥vJc∥163∥vJ∥1

∥Θ1/2v∥2
8∥vJ∥2

> 0,

where |J | denotes the cardinality of J .

Note that (C.1) limits the maximal possible rate of growth for the number of variables that are

conditionally correlated with each variable. (C.2) is the restricted eigenvalue condition, which is weaker

than requiring the minimum eigenvalue of Θ to be bounded away from 0. Note that both (C.1) and (C.2)

are regular conditions and are commonly used in the literature, e.g., [19, 22, 25–28, 39]. We use them to

show that with high probability the first step does not shrink the nonzero entries of Θ into zeros. In

addition, we use the following assumptions for the second step of the algorithm:

(C.3) For any index set A of variable pairs and Cardinality(A) 6 n × p, there exists some constant

α ∈ (0, 1] such that maxe∈A/S ∥Γe,S(ΓSS)
−1∥1 6 1−α, where ∥ · ∥1 denotes the usual ℓ1 norm of a vector

and Γ = Θ−1 ⊗Θ−1, with ⊗ denoting the Kronecker matrix product.

(C.4) The maximum eigenvalue of Σ is bounded, i.e., for some constant κ2, we have Λmax(Σ) 6 κ2

< ∞.

Condition (C.3) limits the influence that the non-edge terms, indexed by A/S, can have on the

edge-based terms, indexed by S. We note that it can be considered as an alternative version of [28,

Assumption 1]. (C.4) assumes that the eigenvalues of the true covariance matrix are bounded away from

infinity, and it is used to assure the tail bound of the associated sample covariance of Σ.

Now we state our major theoretical results.

Theorem 3.1. Suppose (C.1) and (C.2) hold. Set λ1 = K1

√
log p/n, where K1 > 4. Let βmin be the

minimum absolute value of nonzero elements of βjj′ , j ̸= j′. Assume βmin > 3
κ1
K1

√
l0 log p/n, where κ1

is defined in (C.2). Suppose the sample size satisfies n > K2l0 log p for some constant K2. We have

P(S ⊆ Â) > 1− 1/p.

This implies that after the screening step, we obtain an index set Â that contains all nonzero elements

of Θ with high probability. It is worth noting that one may further apply a hard-thresholding step to the

estimated coefficients, and under certain conditions, one could show such hard-thresholding may achieve

sign consistency [20]. However, this involves a thresholding parameter and also once a coefficient is hard-

thresholded to zero, it will not be estimated as nonzero anymore in the second step, which is restrictive.

Thus we choose not to utilize hard-thresholding and instead use the estimated coefficients for screening,

and perform the final selection and estimation in the second step of the algorithm. This turns out to

work better than hard-thresholding in practice as illustrated in numerical studies in Section 4.

The following result shows sign consistency for the proposed two-step algorithm.

Theorem 3.2. Suppose (C.1)–(C.4) hold. Set λ2 = 4M
α ( log(np)

τ

n )1/2, where τ > 1, M > 0 and α

is defined in (C.3). Let θmin be the minimum absolute value of nonzero entries of Θ. Assume θmin >

4K(Γ)(1+ 4M
α )( τ log(np)

n )1/2, where K(Γ) = ∥Γ−1
SS∥∞ with ∥ · ∥∞ denoting the usual ℓ∞ norm of a matrix,

e.g., ∥Σ∥∞ = maxj=1,...,p

∑p
j′=1 |Σjj′ |. Furthermore, suppose the sample size satisfies(
τ log(np)

n

)1/2

6
{
3

(
1 +

4M

α

)
K(Γ)∥Σ∥3∞l0

}−1

.

Then the following result holds with probability at least 1− 1
pτ−1 − 1

p :

sign(θ̂jj′) = sign(θjj′), for all 1 6 j, j′ 6 p.
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Let q be the number of nonzero off-diagonal elements in Θ. Next, we obtain the rate of convergence

for Θ̂ in the Frobenius norm.

Theorem 3.3. Suppose (C.1)–(C.4) hold. Under the same setting of Theorem 3.2, the following event

holds with probability at least 1− 1
pτ−1 − 1

p :

∥Θ̂−Θ∥F 6 2K(Γ)

(
1 +

4M

α

)(
τ(p+ q) log(np)

n

)1/2

,

where ∥ · ∥F denotes the usual Frobenius norm of a matrix.

4 Numerical results

4.1 Simulation studies

In this section, we conduct simulation experiments to examine the finite sample performance of the

proposed method. We also compare the proposed method with two other two-step methods, the adaptive

GLASSO and Gelato [7, 39], as well as two other one-step methods, the GLASSO and SCAD [7,37].

We consider three simulation settings:

Model 1. Diagonal but heterogeneous model with Σ = diag(σj), where σj = min(j, 200) and j =

1, . . . , p.

Model 2. Tri-diagonal model with θjj = 1 and θj,j−1 = θj−1,j = 0.3 for j = 1, . . . , p.

Model 3. Set Θ = B+ δI, where the diagonal entries of B are all equal to zeros, and each off-diagonal

entry is generated independently and equals 0.5 with probability ρ and 0 with probability 1− ρ. We set

ρ = 0.02 and choose δ such that the conditional number of Θ is close to min(p, 200). The matrix is then

standardized to have unit diagonals.

To demonstrate the strength of the two-step approach in general, we first compare the performance of

the proposed two-step method with that of the GLASSO. To make the comparison fair, we set λ1 = λ2 = λ

for the two-step method so that there is only one tuning parameter for both the proposed two-step method

and the GLASSO. We fix the sample size n = 100 and vary the dimensionality p = 50, p = 80, p = 120

and p = 200. We use the Frobenius norm error ∥Θ̂ − Θ∥F to evaluate the performance of the estimate.

The results are shown in Figure 1. As one can see, across different simulation settings, the proposed

two-step method in general outperforms the one-step method GLASSO.

Next, we add SCAD and two other two-step methods, i.e., the adaptive GLASSO and Gelato for

comparison. For Model 3, in addition to ρ = 0.02 (Model 3a), we also consider a denser setting with

ρ = 0.1 (Model 3b). For the adaptive GLASSO, the regularization weights are defined as follows: Let Θ̃ be

the GLASSO estimate. Then we set wjj′ = max{
√
n, 1/min(j,j′)∈S̃ |θ̃jj′ |} if θ̃jj′ = 0, and wjj′ = 1/|θ̃jj′ |

otherwise. All tuning parameters are selected by using five-fold cross-validation as done in [7,29], and all

simulations are replicated 100 times. The results are shown in Table 1. As one can see, in both high- and

low-dimensional settings, the proposed two-step method nearly uniformly outperforms other methods.

Furthermore, we compare different methods in terms of identifying zero/nonzero elements of the con-

centration matrix using the receiver operating characteristic (ROC) curve. Each point on the ROC curve

corresponds to a false positive rate (FPR) and a true positive rate (TPR), obtained by a particular value

of the tuning parameter. The FPR and the TPR are respectively defined as

FPR =
# of incorrectly identified nonzero elements

p(p− 1)− q
,

TPR =
# of correctly identified nonzero elements

q
,

where p is the number of variables and q is the number of nonzero off-diagonal elements in Θ. For the

purpose of comparison, we consider the following model: Set the diagonal elements of Θ to be 1, and as

for the off-diagonal elements, we set θjj′ = θj′j = η if |j − j′| 6 k and 0 otherwise, where η is generated
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Figure 1 (Color online) Results for three simulation models (n = 100, ρ = 0.02 for Model 3), corresponding to the three

rows. The red line shows the results for the GLASSO and the black line for the proposed two-step method. The vertical

axis is the Frobenius norm error ∥Θ̂−Θ∥F and the horizontal axis corresponds to the tuning parameter λ

from the uniform distribution Unif[0, 0.5], and we use k to control the sparsity of Θ. Specifically, we have

considered four settings: (1) n = 100, p = 50, q = 100; (2) n = 100, p = 50, q = 200; (3) n = 50, p = 100,

q = 600; (4) n = 50, p = 100, q = 800; and they correspond to the low/high-dimensional and sparse/non-

sparse scenarios. Both the adaptive GLASSO and our method have two tuning parameters and we set

λ1 = λ2 = λ. The results are shown in Figure 2. As one can see, all methods perform better in the sparse

settings in comparison with the non-sparse settings, and the two-step methods in general perform better

than the one-step methods, in this case, the GLASSO and SCAD. Furthermore, the proposed two-step

method performs the best among the five methods in terms of identifying zero/nonzero elements of the

concentration matrix.

4.2 The data example

In this subsection, we apply the proposed two-step method to a breast cancer microarray data set that

consists of 1,217 genes from 244 breast cancer tumor samples [4, 33, 35]. Breast cancer is a complex

disease, where molecular characterization is needed to improve diagnostic and therapeutic strategies, and

the tumor process cannot be understood by only analyzing individual genes. Over the past 15 years,
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Table 1 Comparison of Frobenius norm errors for four simulation models

n = 100 p = 50

Two-step method Adaptive GLASSO Gelato SCAD

Model 1 0.16 (0.06) 0.17 (0.07) 0.17 (0.09) 0.38 (0.05)

Model 2 2.23 (0.12) 2.32 (0.16) 2.91 (0.11) 2.29 (0.07)

Model 3a 1.41 (0.14) 2.63 (0.11) 1.68 (0.31) 2.16 (0.12)

Model 3b 2.10 (0.14) 2.79 (0.11) 2.65 (0.41) 2.54 (0.09)

n = 50 p = 100

Two-step method Adaptive GLASSO Gelato SCAD

Model 1 0.19 (0.07) 0.26 (0.13) 0.24 (0.14) 0.82 (0.02)

Model 2 4.36 (0.16) 4.61 (0.07) 4.86 (0.04) 5.81 (0.02)

Model 3a 4.08 (0.25) 4.43 (0.25) 4.22 (0.36) 5.65 (0.35)

Model 3b 5.69 (0.33) 6.19 (0.17) 5.86 (0.88) 6.98 (0.15)

n = 200 p = 400

Two-step method Adaptive GLASSO Gelato SCAD

Model 1 0.15 (0.02) 0.82 (0.03) 0.61 (0.02) 0.60 (0.02)

Model 2 4.25 (0.07) 5.19 (0.08) 4.83 (0.06) 5.23 (0.05)

Model 3a 6.55 (0.05) 6.70 (0.09) 5.41 (0.08) 6.56 (0.06)

Model 3b 7.16 (0.19) 10.09 (0.04) 9.17 (0.05) 9.83 (0.05)

n = 400 p = 800

Two-step method Adaptive GLASSO Gelato SCAD

Model 1 0.08 (0.04) 0.78 (0.02) 0.25 (0.02) 1.03 (0.01)

Model 2 4.07 (0.04) 6.40 (0.03) 4.13 (0.02) 6.45 (0.04)

Model 3a 9.28 (0.20) 14.77 (0.36) 15.99 (0.12) 9.93 (0.08)

Model 3b 10.51 (0.04) 16.57 (0.17) 18.21 (0.10) 14.39 (0.03)

a large amount of gene expression signatures have been identified to have potential clinical usage, and

in this section, we focus on p = 1,217 genes whose expression levels are significantly associated with the

breast cancer.

We apply the proposed two-step method to estimate the concentration graph and then use two ways to

search for potential interesting genes: (1) we obtain genes by ranking nodes according to their estimated

degrees; and (2) we look for gene pairs that are connected over a range of values of the tuning parameters.

By using the first way, the top seven genes are: STK15, AARS, VACM-1, SMARCA2, CUL5, PSMB2,

and XBP1 (see Figure 3), which are all important known regulators in the tumor process. For example,

STK15, the serine/threoninkinase 15 gene, is named the breast tumor amplified kinase (BTAK) since it

is strongly correlated with the amplification of breast cancer organizations [21]. AARS, the alanyl-tRNA

synthetase, is a protein coding gene which is associated with several diseases. VACM-1, a cul-5 gene, has

been shown to have an inhibition effect on the T47D breast cancer cell growth [3].

Using the second way, we find several gene pairs that are always connected when the tuning parameter

is varied over a range of values. For example, EXO1 is always connected with SOX2 and NESP55, while

recent literature in biology [34] has studied the association between the polymorphisms of the EXO1

gene and the risk of breast cancer and has provided evidence that EXO1 may be associated with the

development of breast cancer and may be a useful biomarker for breast cancer detection and primary

prevention. It is also found that PTTG is always connected with GNAS1, and it is known that GNAS is

associated with survival of patients with invasive breast carcinoma [24].

We have also applied the adaptive GLASSO and Gelato to the same dataset. All three methods always

find STK15 and SMARCA2 among the top ranking nodes (in terms of estimated degrees); however, the

proposed method also identifies AARS and VACM-1 as important genes while the other two methods

do not, and both genes have been shown in the literature that they have specific influences on breast

cancer [3,21]. In terms of gene pairs, over a range of values of the tuning parameter, the Gelato selects a



1210 Yang Y H et al. Sci China Math June 2020 Vol. 63 No. 6

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1.0

False positive rate

(a) n = 100, p = 50, q = 100

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1.0

False positive rate

(b) n = 100, p = 50, q = 200

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.2 0.4 0.6 0.80

0

0.2

0.4

0.6

0.8

1.0

False positive rate

(c) n = 50, p = 100, q = 600

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.2 0.4 0.6 0.80

0

0.2

0.4

0.6

0.8

1.0

False positive rate

(d) n = 50, p = 100, q = 800

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Figure 2 (Color online) Results of ROC curves under the four simulation scenarios. The black, red, blue, orange and green

lines correspond to the proposed two-step method, adaptive GLASSO, Gelato, SCAD and GLASSO methods, respectively

Figure 3 (Color online) The inferred graph from the breast cancer microarray data set by the proposed method. The

yellow nodes correspond to the seven genes that have the highest estimated degrees

set of gene pairs similar to that of the proposed method, while the adaptive GLASSO tends to select a

smaller set and many of the gene pairs in the selected set are different from those selected by the other

two methods. Nevertheless, four gene pairs have always been chosen by all three methods: PTTG2-

PTTG1, C4B-C4A, GAPD-ADAMTS7 and GNAS1-NESP55. The first two pairs may be less interesting

as PTTG1 and PTTG2 share greater than 80% identity at the amino acid level [12], and C4A and C4B

are two isoforms encoded from C4 [17], while for GNAS1-NESP55, it is known that the transcripts from

NESP55 splice onto GNAS1 [14].
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5 Summary

In this paper, we have proposed a two-step method for estimating high-dimensional Gaussian graphical

models. The first step serves as a screening step, in which many entries of the concentration matrix are

identified as zeros and thus removed from further consideration. Then in the second step, we focus on the

remaining entries of the concentration matrix and apply a weighted graphical LASSO method to select

and estimate nonzero entries of the concentration matrix. Since the dimension of the parameter space is

effectively reduced by the screening step, the estimation accuracy of the estimated concentration matrix

can be potentially improved. We have shown the proposed method enjoys desirable asymptotic properties.

Comparisons of the proposed method with several existing methods for Gaussian graphical models on

simulation studies indicate that the proposed method works well. We have also applied the proposed

method to a breast cancer microarray data set and obtained some biologically meaningful results.

Note that in the first step of the algorithm, we have used a regularized regression based method to

screen zero entries of the concentration matrix. We do not use penalized likelihood based methods as

it has been demonstrated that the former tends to be more effective at identifying zero elements in the

concentration matrix than the latter [19, 25]; our own experiences have also confirmed the same (results

not shown). A potential alternative is to use (corrected) p-values and a pre-specified FDR threshold, e.g.,

[5, 15,23,30,32,38], and we will explore that in our future work.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.

11671059).
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Appendix A

Lemma A.1. Let β̂ be the solution to

{β̂jj′} = argmin
1

2n

p∑
j=1

n∑
i=1

(
xij −

∑
j′ ̸=j

xij′βjj′

)2

+ λ1

∑
j ̸=j′

|βjj′ |. (A.1)

The optimality conditions for (A.1) can be written as

1

n

n∑
i=1

xij′ ·
(
xij −

∑
j′ ̸=j

xij′ β̂jj′

)
= λ1γjj′ , (A.2)

where

γjj′ =

{
sign(β̂jj′), if j ̸= j′ and β̂jj′ ̸= 0,

a real number ∈ [−1, 1], if j ̸= j′ and β̂jj′ = 0.
(A.3)
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Note that given j, (A.2) can be seen as an LASSO solution and hence has at most min{n, p} nonzero

components.

Proof of Lemma A.1. The partial derivative of the first part of (A.1) with respect of βjj′ can be

calculated as follows:

∂
1

2n

{ p∑
j=1

·
n∑

i=1

(
xij −

∑
j′ ̸=j

xij′βjj′

)2}/
∂βjj′

=
1

2n

n∑
i=1

∂

{ p∑
j=1

(
xij −

∑
j′ ̸=j

xij′βjj′

)2}/
∂βjj′

= − 1

n

n∑
i=1

xij′ ·
(
xij −

∑
j′ ̸=j

xij′βjj′

)
.

Note that γjj′ of (A.3) is the subgradient of the function f(x) = ∥x∥1 evaluated at x = β̂. Therefore,

by the Karush-Kuhn-Tucker (KKT) conditions, we have {β̂jj′} is a solution of (A.1) if and only if β̂jj′

satisfies (A.2) and (A.3).

The following notation will be used throughout the proof of Theorem 3.1. With a bit abuse of notation,

we let û =
√
n(β̂ − β) and W be (p− 1)× p matrices with elements

√
n(β̂jj′ − βjj′) and

1√
n

∑n
i=1 xij′ϵij ,

j ̸= j′, respectively, and C be the p× p matrix with elements 1
n

∑n
i=1 xijxij′ , where j, j′ = 1, . . . , p. Let

β·j , û·j and W·j denote the j-th column of β, û and W , respectively, e.g.,

û·j = (û1j , . . . , û(j−1)j , û(j+1)j , . . . , ûpj)
T.

Similarly, WSj and ûSj denote the sub-vector of W·j and û·j corresponding to Sj , respectively.

Lemma A.2. Conditional on {2∥W·j∥∞ 6 √
nλ1}, we have

∥ûSc
j
∥1 6 3∥ûSj∥1, for j = 1, . . . , p.

Proof. Given j = 1, . . . , p, we have

1

2n

n∑
i=1

(
xij −

∑
j′ ̸=j

xij′ β̂jj′

)2

+ λ1

∑
j′ ̸=j

|β̂jj′ |1

6 1

2n

n∑
i=1

(
xij −

∑
j′ ̸=j

xij′βjj′

)2

+ λ1

∑
j′ ̸=j

|βjj′ |1.

Since
∑

j′ ̸=j |β̂jj′ |1 = ∥β̂Sj
∥1 + ∥β̂Sc

j
∥1 and ∥β̂Sj

∥1 > −∥β̂Sj
− βSj

∥1 + ∥βSj
∥1, we have

1

n

n∑
i=1

∑
j′ ̸=j

x2
ij′(β̂jj′ − βjj′)

2 + 2λ1∥β̂Sc
j
∥1

6 2
1

n

n∑
i=1

ϵi
∑
j′ ̸=j

xij′(β̂jj′ − βjj′) + 2λ1∥β̂Sj − βSj∥1. (A.4)

Conditional on {2∥W·j∥∞ 6 √
nλ1}, we also have

2
1

n

n∑
i=1

ϵij
∑
j′ ̸=j

xij′(β̂jj′ − βjj′) 6 λ1

∑
j′ ̸=j

|β̂jj′ − βjj′ |

6 λ1∥β̂Sj − βSj∥1 + λ1∥β̂Sc
j
∥1. (A.5)

Combining (A.4) and (A.5), we have

1

n

n∑
i=1

∑
j′ ̸=j

x2
ij′(β̂jj′ − βjj′)

2 + 2λ1∥β̂Sc
j
∥1 6 3λ1∥β̂Sj − βSj∥1 + λ1∥β̂Sc

j
∥1.

Therefore, ∥ûSc
j
∥1 6 3∥ûSj∥1.
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Lemma A.3. Given j = 1, . . . , p, according to (C.1) and (C.2), conditional on

{2∥WSj∥2 6
√

l0
√
nλ1} ∩ {2∥W·j∥∞ 6

√
nλ1},

we have

∥ûSj∥2 6 3

κ1

√
l0
√
nλ1.

Proof. It holds that

Set F (β) =
1

2n

p∑
j=1

n∑
i=1

(
xij −

∑
j′ ̸=j

xij′βjj′

)2

+ λ1

∑
j ̸=j′

|βjj′ |.

Define V (u) = F (β̂)− F (β):

V (u) =

p∑
j=1

{
1

2n
uT
·jC−ju·j −

1

n
uT
·jW·j

}
+ λ1

∑
j ̸=j′

(∣∣∣∣βjj′ +
ujj′√
n

∣∣∣∣− |βjj′ |
)

=

p∑
j=1

{
1

2n
uT
·jC−ju·j −

1

n
uT
·jW·j + λ1

(∥∥∥∥β·j +
u·j√
n

∥∥∥∥
1

− ∥β·j∥1
)}

,
p∑

j=1

{Gj(u)},

where C−j denotes the (p−1)×(p−1) matrix without the j-th column and the j-th row, j = 1, . . . , p. We

have û = argminu V (u). Note that according to [26, Corollary 1] there are universal positive constants c′

and c such that with probability at least 1− c′ exp(−cn), we have for all v ∈ Rp,

∥C1/2v∥2 > 1

8
∥Σ1/2v∥2.

By (C.2) and ∥ûSc
j
∥1 6 3∥ûSj

∥1, we have ûT
·jC−j û·j > κ1∥ûSj

∥22. Then for j = 1, . . . , p, we have, for u·j
satisfying (C.2), that

Gj(u) =
1

2n
uT
·jC−ju·j −

1

n
uT
·jW·j + λ1

(∥∥∥∥β·j +
u·j√
n

∥∥∥∥
1

− ∥β·j∥1
)

> 1

n

[
κ1

2
∥uSj∥22 − |uT

Sj
WSj | −

√
nλ1∥uSj∥1

]
+

[
λ1√
n
∥uSc

j
∥1 −

1

n
|uT

Sc
j
WSc

j
|
]
. (A.6)

Conditional on {2∥W·j∥∞ 6 √
nλ1}, the second part of (A.6) can be calculated as

λ1√
n
∥uSc

j
∥1 −

1

n
|uT

Sc
j
WSc

j
| >

∑
j′ /∈Sc

j

|ujj′ |
[
λ1√
n
−

∥WSc
j
∥∞

n

]
> 0. (A.7)

By (C.1), the first term of the right-hand side of (A.6) is bounded as

1

n

[
κ1

2
∥uSj∥22 − |uT

Sj
WSj | −

√
nλ1∥uSj∥1

]
> 1

n
∥uSj∥2

[
κ1

2
∥uSj∥2 − ∥WSj∥2 −

√
nλ1 ·

√
l0

]
.

Hence Gj(u) is greater than zero as well when

∥uSj∥2 >
2

κ1
{∥WSj∥2 +

√
l0
√
nλ1}.

Conditional on {2∥WSj∥2 6
√
l0
√
nλ1}, define

M0 ≡ 3

κ1

√
l0
√
nλ1.

Since we have Gj(0) = 0, it follows that the minimum of Gj(u) cannot be attained at any u satisfying

∥ûSj∥2 > M0. Thus, conditional on {2∥WSj∥2 6
√
l0
√
nλ1} and (C.2), we have ∥ûSj∥2 6 M0.
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Proof of Theorem 3.1. According to Lemma A.3, (C.1) and (C.2), conditional on

{2∥WSj∥2 6
√

l0
√
nλ1} ∩ {2∥W·j∥∞ 6

√
nλ1},

we have for j = 1, . . . , p,

∥ûSj∥2 6 3

κ1

√
l0
√
nλ1

and √
n∥β̂Sj − βSj∥∞ 6 ∥ûSj∥2 6 3

κ1

√
l0
√
nλ1.

Since λ1 = K1

√
log p/n, we have for every (j, j′) ∈ S, β̂jj′ ̸= 0.

For the event in Lemma A.3, by n > K2l0 log p, we have

P

(
∥W·j∥∞ >

K1

2

√
log p

)
6 p ·

(
K1

2

√
log p/n

)−1

exp

(
− K1

4
log p

)
<

1

p
,

P

(
∥WSj∥2 >

K1

2

√
l0
√
log p

)
6 l0 ·

(
K1

2

√
log p/n

)−1

exp

(
− K1

4
log p

)
<

1

p

and for all v ∈ Rp,

P

(
∥C1/2v∥2 > 1

8
∥Σ1/2v∥2

)
<

1

p
.

Thus, we have

P(S * Â) 6 1

p
→ 0, as n → ∞.

This completes the proof.

Now we prove Theorem 3.2. We change the definition of S a little. Specifically, let S be the set

containing both diagonal and off-diagonal nonzero entries of Θ, i.e.,

S = {(j, j′) : θjj′ ̸= 0}, (A.8)

and Cardinality(S) = q + p. Then we introduce the following Lemma, where more details can be found

in [2, Lemma 3] and [29, Lemma 1].

Lemma A.4. By (C.4), let Zi’s be independent identically distributed from N (0,Σ) and Λmax(Σ) <

κ2 < ∞. Then for Σ = {σjj′}, the associated sample covariance Σ̂ = {σ̂jj′} satisfies the tail bound

P(|σ̂jj′ − σjj′ | > δ) 6 K3 exp(−K4nδ
2),

where K3 and K4 are positive constants depending on the maximum eigenvalue of Σ, and |δ| 6 κ3,

where κ3 depends on κ2 as well.

Proof. We omit the proof and refer the readers to [2, 29].

Note that given the property of the solution of LASSO, we have Cardinality(Â) < n · p, and thus Â

satisfies (C.3). Furthermore, according to Theorem 3.1, we have S ⊆ Â with high probability. For

notational simplicity, we denote it as A for the rest of the proof instead of Â.

Lemma A.5. For any λ2 > 0 and sample covariance Σ̂ with strictly positive diagonal elements, the

restricted log-determinant problem has a unique solution Θ̂ ≻ 0 characterized by

− Θ̂−1 + Σ̂ + λ2Ẑ = 0, (A.9)

where ẐA is an element of the subdifferential ∂(
∑

(j,j′)∈A |wjj′θjj′ |) such that

Ẑjj′ =

{
sign(θ̂jj′) · ŵjj′ , if θ̂jj′ ̸= 0,

a real number ∈ [−ŵjj′ , ŵjj′ ], if θ̂jj′ = 0.
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This result is similar to [28, Lemma 3], and hence we omit the proof here.

Lemma A.6. Suppose (C.1)–(C.3) hold. Conditional on the first step solution, with appropriately

chosen λ2 and the sample size, the following event holds with probability at least 1− 1
pτ−1 (τ > 1),

sign(Θ̂Sc) = sign(ΘSc) = 0.

Proof. We assume there exists a solution Θ̄ for the following restricted log-determinant problem:

Θ̄ = arg min
Θ∈MS

{− log |Θ|+ tr(ΘΣ̂) + λ2Z̃}, (A.10)

where MS = {Θ ∈ Rp×p; Θ ≻ 0 and θjj′ = 0 for all (j, j′) /∈ S, j ̸= j′}.
By construction, set Z̃jj′ =

1
λ2
(−Σ̂jj′ + [Θ̄−1]jj′), which makes Z̃ satisfy (A.9). If we are able to show

|Z̃jj′ | 6 wjj′ , where (j, j′) ∈ A/S, then it implies Θ̄ is equal to the solution Θ̂ of the original criterion.

The argument is along the lines of a result due to [28]. We apply it to the second step of the proposed

method, which has shrunk many edges to zeros.

Let ∆ = Θ̄−Θ, and R(∆) be the difference between the gradient ∇(log |Θ̄|) = Θ̄−1 and its first-order

Taylor expansion around Θ by using the first and second derivatives of the log-determinant function,

which is

R(∆) = Θ̄−1 −Θ−1 +Θ−1∆Θ−1.

Then the solution of (A.10) can be rewritten as

Θ−1∆Θ−1 +H −R(∆) + λ2Z̃ = 0,

where H , Σ̂ − Θ−1 = Σ̂ − Σ. Let Γ = Θ−1 ⊗ Θ−1, where ⊗ denotes the Kronecker matrix product.

Consider the sub-block of Γ, i.e.,

ΓSS := [Θ−1 ⊗Θ−1]SS ∈ R(q+p)×(q+p),

where q is the number of nonzero off-diagonal entries of the concentration matrix (divided by 2) and p

is the number of diagonal elements of the concentration matrix. Let ∆̄ be the vector version of ∆. The

above equality can be rewritten into two blocks,

ΓSS∆̄ + H̄S − R̄S + λ2
¯̂
ZS = 0,

Γ(A/S)S∆̄ + H̄A/S − R̄A/S + λ2
¯̃
ZA/S = 0.

It follows that
¯̃
ZA/S = − 1

λ2
(Γ(A/S)S∆̄ + H̄(A/S) − R̄(A/S)). (A.11)

We now consider the upper bounds of ∥H̄A∥∞ and ∥R̄A∥∞. First, consider a multivariate Gaussian

vector; the deviation of the sample covariance matrix Σ̂ has an exponential type tail bound. Let δ =

( τ log(np)
n )1/2. We have

P(∥H̄A∥∞ > δ) < n · p · P(|σ̂jj′ − σjj′ | > δ)

6 n · p ·K3 exp(−K4nδ
2)

6 1

pτ−1
.

Second, use [28, Lemma 5], and set G0 = 3
2 l0∥Σ∥

3
∞, where ∥Σ∥∞ = maxj=1,...,p

∑p
j′=1 |Σjj′ |. Then

conditional on the first step, we have

∥R̄A∥∞ 6 G0∥Θ̂A −ΘA∥∞.
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Note that the above inequality holds according to the result

∥Θ̂A −ΘA∥∞ < (3l0 · ∥Σ∥∞)−1.

Given j, since Cardinality(Aj) 6 n, the maximum likelihood estimate of Θ based on A exists and is

unique [31]. By [10,39], Θ̃ converges to a certain matrix with the rate at least 1/pτ−1.

Define B as

B := {∆S : ∥∆S∥∞ 6 2K(Γ)(∥HS∥∞ + λ2M1},

where K(Γ) = ∥Γ−1
SS∥∞ and there exists a constant M1 such that ∥ŵS∥∞ < M1. By [28, Lemma 6],

the solution ∆S = Θ̄S −ΘS is contained inside the l∞ ball. Conditional on the event B and choosing a

suitable n, we have ∥R̄S∥∞ 6 δ.

Now we prove the upper bound of | ¯̃ZA/S | in (A.11). By setting Z̃jj′ , we have −Θ̄−1
S + Σ̂S + λ2Z̃S = 0.

Thus the following equality holds:

∆̄S − (ΓSS)
−1vec(−[(Θ +∆)−1]S + Σ̂S + λ2Z̃S) = ∆̄S . (A.12)

By a direct calculation, we have

∆̄S − (ΓSS)
−1vec(−[(Θ +∆)−1]S + Σ̂S + λ2Z̃S)

= (ΓSS)
−1RS − (ΓSS)

−1(H̄S + λ2
¯̃
ZS). (A.13)

By letting λ2 = 4M2

α δ and setting max(j,j′)∈A/S |θ̃jj′ | 6 M2, from (A.12) and (A.13), with e ∈ A/S, it

follows

|e ¯̃ZA/S | = e

∣∣∣∣ 1λ2
(Γ(A/S)S∆̄ + H̄(A/S) − R̄(A/S))

∣∣∣∣
=

∣∣∣∣− 1

λ2
eΓ(A/S)S(ΓSS)

−1(H̄S − R̄S) + eΓ(A/S)S(ΓSS)
−1 ¯̂ZS

− e
1

λ2
(H̄(A/S) − R̄(A/S))

∣∣∣∣
6 1

λ2
|eΓ(A/S)S(ΓSS)

−1|(∥H̄S∥∞ + ∥R̄S∥∞) + |eΓ(A/S)S(ΓSS)
−1 ¯̃ZS |

+
1

λ2
(∥H̄S∥∞ + ∥R̄S∥∞)

6 α

2M2
(1− α) + (1− α)M1 +

α

2M2

<
q

M2
.

Then we have |Z̃jj′ | 6 wjj′ where (j, j′) ∈ A/S, which implies Θ̄ is equal to the solution Θ̂ and

sign(Θ̂Sc) = 0.

Proof of Theorem 3.2. We now have all necessary ingredients to prove Theorem 3.2. We show that with

high probability the nonzero edge set of Θ̄ is equal to the solution of the proposed two-step method Θ̂.

Thus we have

∥Θ̂S −ΘS∥∞ 6 2K(Γ)(∥HS∥∞ + λ2M1).

Let M = M1 ×M2. With probability at least 1− 1
pτ−1 , we have

∥Θ̂S −ΘS∥∞ 6 2K(Γ)

(
1 +

4M

α

)(
τ log(np)

n

)1/2

.

The minimum absolute value θmin of nonzero entries of Θ satisfies

θmin > 4K(Γ)

(
1 +

4M

α

)(
τ log(np)

n

)1/2

.
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Hence it equals to saying sign(Θ̂S) = sign(ΘS).

In addition, according to the result of Lemma A.6, with probability at least 1− 1
pτ−1 , we have

sign(Θ̂Sc) = sign(ΘSc) = 0. (A.14)

Since (A.14) is built on the first step of the proposed method, overall, we have

P(sign(Θ̂) ̸= sign(Θ)) 6 P(sign(Θ̂A) ̸= sign(ΘA), S ⊆ A) + P(S * A)

6 1

pτ−1
+ exp(−nη).

This completes the proof.

Proof of Theorem 3.3. Note we have

∥Θ̂S −ΘS∥∞ 6 2K(Γ)

(
1 +

4M

α

)(
τ log(np)

n

)1/2

,

with probability at least 1− 1
pτ−1 −exp(−nη). By the setting of S in (A.8), we have Cardinality(S) = p+q.

It is straightforward to calculate that

∥Θ̂−Θ∥F 6 2K(Γ)

(
1 +

4M

α

)(
τ(p+ q) log(np)

n

)1/2

.

This completes the proof.
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