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Two-Stage Regularized Linear Discriminant
Analysis for 2-D Data
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Abstract— Fisher linear discriminant analysis (LDA) involves
within-class and between-class covariance matrices. For 2-D data
such as images, regularized LDA (RLDA) can improve LDA
due to the regularized eigenvalues of the estimated within-class
matrix. However, it fails to consider the eigenvectors and the
estimated between-class matrix. To improve these two matrices
simultaneously, we propose in this paper a new two-stage method
for 2-D data, namely a bidirectional LDA (BLDA) in the first
stage and the RLDA in the second stage, where both BLDA and
RLDA are based on the Fisher criterion that tackles correlation.
BLDA performs the LDA under special separable covariance
constraints that incorporate the row and column correlations
inherent in 2-D data. The main novelty is that we propose a
simple but effective statistical test to determine the subspace
dimensionality in the first stage. As a result, the first stage reduces
the dimensionality substantially while keeping the significant
discriminant information in the data. This enables the second
stage to perform RLDA in a much lower dimensional subspace,
and thus improves the two estimated matrices simultaneously.
Experiments on a number of 2-D synthetic and real-world data
sets show that BLDA+RLDA outperforms several closely related
competitors.

Index Terms— 2-D data, dimension reduction, linear
discriminant analysis (LDA), regularization, separable
covariance.

I. INTRODUCTION

F ISHER linear discriminant analysis (LDA) is a well-
known supervised subspace learning technique for 1-D

data, where observations are vectors. To apply LDA to 2-D
data such as images, where observations are matrices, one
common solution is to first vectorize the 2-D data and then
apply LDA to the resulting 1-D data. However: 1) the vec-
torized 1-D data are often of very high dimension (typically
over tens of thousands of pixels), on which LDA suffers from
poor performance due to the (approximately) singular within-
class sample covariance matrix [1] and 2) even if sufficient
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number of samples are available, the variables (i.e., pixels of
images) are often highly correlated, which could deteriorate
the performance of LDA [2].

To deal with problems 1) and 2) simultaneously, several
solutions have been proposed in the literature. The reg-
ularized LDA (RLDA) proposed in [3] has been proven
effective [4], [5]. Moreover, Ji and Ye [6] show that RLDA is
comparable with or even better than the state-of-art classifier
support vector machine while being computationally more
efficient. Despite the success of RLDA, RLDA simply regular-
izes the eigenvalues of the estimated within-class covariance
matrix. It fails to consider the eigenvectors and the estimated
between-class covariance matrix. It is thus of interest to inves-
tigate whether the performance of RLDA could be improved
if some sort of regularization is applied to these two matrices
simultaneously.

A simple yet effective way toward this end is to use the idea
of two-stage methods presented in [7]: in the first stage, one
reduces the data dimensionality to a moderate size (by discard-
ing the unnecessary variables/features); in the second stage,
one then performs RLDA in the lower dimensional space. This
idea has been frequently employed in the classification of gene
expression data, where a preliminary selection of genes using
diagonal-covariance LDA (DLDA) is performed in the first
stage and then the selected important variables/genes are fed
into a classier in the second stage [8], [9].

The key to DLDA is the independence assumption,
which has been proven successful for gene expression
data [8], [9], [11]. This could be ascribed into the fact that
a large number of genes exhibit nearly constant expression
levels across samples [12] and hence DLDA is suitable to
screen out unimportant ones. However, the variables (pixels)
of image data are highly correlated and ignoring correlation
among pixels would be suboptimal. Fan et al. [13] show that
the gain of incorporating the correlation is substantial even
for the classification of gene expression data and the crucial
challenge is how to incorporate the correlation appropriately
into the analysis.

Several two-stage methods have been proposed for image
data. In the first stage, one uses 2-D reduction methods
that consider the underlying 2-D data structure to reduce the
dimensionality of the data, and in the second stage, one per-
forms LDA in the reduced-dimensional space. For example, an
unsupervised method called bidirectional principal component
analysis (BPCA) is used in [14]. The shortcoming is that the
label information is not used for reducing dimensionality, and
thus the discarded subspace may contain useful discriminant
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information. Supervised methods are also proposed, such as
bidirectional maximum margin criterion (BMMC) in [16]
and a weighted version of BMMC in [15]. One common
drawback is that these maximum margin criterion (MMC)-type
methods ignore the within-class correlation altogether [17].
The 2-D LDA (2DLDA) proposed in [18] can deal with the
within-class correlation. However, the associated algorithm
requires iterations for a given subspace dimensionality and
its convergence is not guaranteed [16], [19].

In practice, a challenging issue in applying two-stage meth-
ods is how to determine the suitable subspace dimensionality
in the first stage. Tao et al. [16] propose using the retained
eigenvalue ratio above a threshold whose value is chosen with
validation data. Usually, to achieve satisfactory performance,
a large set of candidate values is considered and thus the
computational cost could be very high. Yang and Dai [15]
suggest setting the threshold as the positive part of the mean
of all eigenvalues, which is denoted as YD’s criterion for
clarity. In spite of its simplicity, our experiments reveal that
its performance is far from satisfactory, e.g., it fails to select
any feature on the United States Postal Service (USPS) digit
data in Section IV-D.

In this paper, we propose a new two-stage RLDA for 2-D
data, namely bidirectional LDA (BLDA) plus RLDA. Unlike
BMMC, BLDA utilizes the Fisher criterion that tackles the
within-class correlation. Unlike independence-based DLDA,
BLDA performs the LDA under special separable covariance
constraints that incorporate the correlations among columns
and rows in 2-D data. More importantly, we can obtain a
simple yet effective statistical test for BLDA to determine the
subspace dimensionality. Therefore, the first stage reduces the
dimensionality substantially, and a much lower dimensional
features than that in DLDA could be used in the subsequent
RLDA stage.

The remainder of this paper is organized as follows.
Section II gives a brief review of LDA and several related
variants. Section III proposes our method. Section IV performs
experiments to compare the proposed method with several
related competitors. We end this paper with some concluding
remarks in Section V.

Notations: The identity matrix is denoted by I, its column j
by e j , the Frobenius norm by ‖ · ‖F , the matrix trace by tr(·),
the vectorization operator by vec(·), and the Kronecker product
by ⊗. Moreover, for k-class classification problem, π j is the
prior probability of class j , C j is the set of n j observations
in class j , where j = 1, . . . , k, and n = ∑

j n j is the total
number of observations.

II. REVIEW OF LDA AND RELATED VARIANTS

A. Linear Discriminant Analysis

Let x ∈ R
d be a random vector drawn from k classes.

LDA assumes that all classes follow normal distributions with
different means μ j ’s but common within-class covariance
matrices �w [20], i.e., x| j ∼ N (μ j ,�w), j = 1, . . . , k. The
global population mean μ = ∑

j π jμ j , and the within-class

covariance matrix is defined as

�w =
k∑

j=1

π j E[(x − μ j )(x − μ j )
′|x ∈ C j ]. (1)

The between-class covariance matrix is defined as

�b =
k∑

j=1

π j (μ j − μ)(μ j − μ)′ (2)

which measures the scatter of class means μ j ’s around the
global mean μ. Consider a linear transformation y = V′x,
where V ∈ R

d×q and q < d . The within-class and between-
class covariance matrices in y-space are V′�wV and V′�bV,
respectively. The Fisher criterion aims to find V that maxi-
mizes the between-class covariance in terms of whitened y,
i.e., (V′�wV)−1/2y. This is formulated in [21] as

F = max
V

tr
{
(V′�wV)−1(V′�bV)

}
. (3)

Let (λ j , v j ) be the j th eigenvalue–eigenvector pair of
�−1

w �b. As shown in [21], the closed-form solution
V = [v1, v2, . . . , vq ] to (3) is given by

V←− top q eigenvectors of �−1
w �b. (4)

Then, the Fisher criterion in (3) can be rewritten as

F =
∑q

j=1
λ j .

As v j is the eigenvector of �−1
w �b, we have �bv j = λ j �wv j

and

λ j =
v′j�bv j

v′j�wv j
(5)

which measures the discriminant capability of direc-
tion vj . Given data {xi }ni=1 as independent identically dis-
tributed (i.i.d.) realizations of x, �b and �w can be
estimated by

�̂b = 1

n

∑k

j=1
n j (μ̂ j − μ̂)(μ̂ j − μ̂)′ (6)

�̂w = 1

n

∑k

j=1

∑

i∈C j
(xi − μ̂ j )(xi − μ̂ j )

′ (7)

where μ̂ j = (1/n j )
∑

i∈C j
xi is the sample mean of class j

and μ̂ = (1/n)
∑

i xi is the global sample mean.

B. Regularized LDA

The RLDA proposed in [3] is a popular method to tackle
problems 1) and 2) mentioned in Section I simultaneously.
It regularizes �̂w in (7) as

�̂w(γ ) = γ �̂w + (1− γ )σ̂ 2I (8)

where σ̂ 2 = tr(�̂w)/d and γ ∈ [0, 1]. �̂w in (8) is shrunk
to a scalar covariance. Recall that ridge regression is a well-
known method to deal with the correlation among variables.
The relationship between RLDA and ridge regression has
been established in [2] and [5], which clarifies why RLDA
is effective for image data.
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C. Diagonal-Covariance LDA

The DLDA is the LDA under the diagonal covariance
assumption [8]. Under this assumption, both the between-class
and within-class covariances are diagonal

� I
b = diag{φb1, φb2, . . . , φbd }

� I
w = diag{φw1, φw2, . . . , φwd }.

Substituting � I
b and � I

w into (4), we obtain that V consists
of the q columns of the identity matrix I corresponding to
the leading q largest ratio φbj/φw j ’s, and the Fisher criterion
in (3) under the diagonal covariance assumption degenerates
into a sum of q Fisher subcriterions, each of which is devoted
to a variable

max
I

∑

j∈I

φbj

φw j
=

∑

j∈I
λI

j (9)

where I is the set of indexes of q variables and λI
j = φbj/φw j

measures the discriminant capability of variable j . Note that
� I

b and � I
w can be estimated by the diagonal parts of �̂b in (6)

and �̂w in (7), respectively.
1) Discriminant Direction Screening in DLDA: Consider

the following hypothesis tests independently:
H0 j : λI

j = 0 versus H1 j : λI
j �= 0, j = 1, . . . , d.

Under the normal assumption, we could use the F-test in the
classical univariate analysis of variance (ANOVA) to screen
out significant variables. Note that in the two-class case, the
F-test is equivalent to the two-sample t-test [10], [11].

D. 2-D LDA

Instead of vectorizing 2-D data, 2DLDA performs dimen-
sion reduction on 2-D data directly. The row-2DLDA [22]
seeks a row linear transformation Y = XUr to maximize
the class separability in the low-dimensional space, where
Ur = [ur1, . . . , urqr ] ∈ R

dr×qr and qr < dr . The relationship
between row-2DLDA and LDA is established in the following
theorem [19].

Theorem 1: Apart from a constant, the row-2DLDA is
equivalent to the LDA under the special separable covariance
assumption that the between-class and within-class covariance
matrices are �b = �r

b ⊗ I and �w = �r
w ⊗ I.

By Theorem 1 and the property of Kronecker product that
(A⊗B)(C⊗D) = (AC⊗BD), we get �−1

w �b = (�r
w
−1�r

b)⊗I
and substituting �b and �w into (4), we find that the
V solution to Fisher criterion (3) is now factorized into
V = Ur ⊗ I, where

Ur ←− top qr eigenvectors of �r
w
−1�r

b. (10)

Using the property tr(A ⊗ B) = tr(A)tr(B), apart from a
constant dc, the Fisher criterion (3) under this assumption
degenerates into a Fisher subcriterion devoted to row directions
only

max
Ur

tr
{
(U′r�r

wUr )
−1(U′r�r

bUr )
} =

qr∑

j=1

λr j (11)

where λr j is the corresponding eigenvalue to ur j ,
j = 1, . . . , qr , given by

λr j =
u′r j�

r
bur j

u′r j �
r
wur j

. (12)

Similar to the Fisher values λ j (5) in LDA and λI
j in DLDA,

the value of λr j in (12) measures the discriminant capability
of direction ur j .

Similarly, the column-2DLDA seeks a column linear trans-
formation Y = U′cX, where Uc = [uc1, . . . , ucqc ] ∈ R

dc×qc

and qc < dc, to maximize class separation. From [19], we
have the following theorem.

Theorem 2: Apart from a constant, the column-2DLDA is
equivalent to the LDA under the assumption that the between-
class and within-class covariance matrices are �b = I ⊗ �c

b
and �w = I⊗�c

w.
By Theorem 2, the V solution to Fisher criterion (3) is

V = I⊗ Uc, where

Uc ←− top qc eigenvectors of �c
w
−1�c

b. (13)

Apart from a constant dr , the Fisher criterion (3) under this
assumption degenerates into a Fisher subcriterion devoted to
column directions

max
Uc

tr
{
(U′c�c

wUc)
−1(U′c�c

bUc)
} =

qc∑

i=1

λci (14)

where λci is the corresponding eigenvalue to uci ,
i = 1, . . . , qc, given by

λci = u′ci�
c
buci

u′ci�
c
wuci

. (15)

Given a set of 2-D data {Xi }ni=1 consisting of k classes,
�c

b,�
r
b,�

c
w , and �r

w can be estimated by their corresponding
sample moments, given by

�̂c
b =

1

ndr

∑

j
n j (M̂ j − M̂)(M̂ j − M̂)′ (16)

�̂r
b =

1

ndc

∑

j
n j (M̂ j − M̂)′(M̂ j − M̂) (17)

�̂c
w =

1

ndr

∑

j

∑

i∈C j
(Xi − M̂ j )(Xi − M̂ j )

′ (18)

�̂r
w =

1

ndc

∑

j

∑

n∈C j
(Xi − M̂ j )

′(Xi − M̂ j ) (19)

where the sample mean M̂ j of class j and global sample
mean M̂ are

M̂ j = 1

n j

∑

i∈C j
Xi and M̂ = 1

n

∑

i
Xi . (20)

E. BLDA

The BLDA proposed in [23] seeks a bilinear transformation
Y = U′cXUr that reduces the dimensionality on both column
and row directions simultaneously. The Uc and Ur solutions
are given by (13) and (10), respectively.
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1) Justification of BLDA: It can be seen that (3) is
invariant for any invertible transformation R ∈ R

q×q , i.e.,
F(V) = F(VR), and thus Fisher criterion finds the important
subspace spanned by V, namely span(V), or, equivalently,
discards the unimportant subspace span(V⊥) spanned by its
orthogonal complement V⊥.

Let U⊥c (respectively U⊥r ) be the orthogonal complement
of Uc (respectively Ur ). Similarly, we discard the unimportant
subspaces span(U⊥r ⊗I) by row-2DLDA, and span(I⊗U⊥c ) by
column-2DLDA. Since span(U⊥r ⊗ I) = span(U⊥r ⊗[Uc, U⊥c ])
and span(I ⊗ U⊥c ) = span([Ur , U⊥r ] ⊗ U⊥c ), by abandoning
these unimportant subspaces, we get the important discrim-
inant subspace span(Ur ⊗ Uc). Thus, the Uc and Ur can
be obtained by (13) and (10), respectively. This provides a
justification why the separate solutions from row-2DLDA and
column-2DLDA can be taken as the solution to BLDA, which
seems missing in the literature.

F. Bidirectional MMC

Different from the Fisher criterion which is based on the
ratio of the between-class matrix to the within-class matrix,
MMC uses the difference between these two matrices. The
BMMC looks for a bilinear transformation Y = U′cXUr , where
Uc ∈ R

dc×qc and Ur ∈ R
dr×qr whose columns are orthogonal

and qc < dc, qr < dr . Uc and Ur can be analytically obtained
by independently solving

arg max
Uc

tr
{

U′c(�̂c
b − �̂c

w)Uc

}

and

arg max
Ur

tr
{

U′r (�̂r
b − �̂r

w)Ur

}
.

Let λm
ci (respectively λm

r j ) be the descending-ordered eigen-

values of �̂c
b − �̂c

w (respectively �̂r
b − �̂r

w). The YD’s crite-
rion [15] determines the subspace dimensionality (qc, qr ) by

qc = arg min
i

λm
ci > max{tr(�̂c

b − �̂c
w)/dc, 0}

qr = arg min
j

λm
r j > max{tr(�̂r

b − �̂r
w)/dr , 0}.

However, as revealed by our experiments in Sections IV-B
and IV-D, the performance of YD’s criterion is not satisfactory.
It tends to choose too small number of features and even no
features on the USPS digit data (Section IV-D). In addition,
BMMC-type methods ignore the within-class correlation
altogether [19] (namely fail to consider the whitened between-
class matrix). Fig. 1 shows the corresponding correlation
matrices to �̂c

b, �̂
r
b, �̂

c
w , and �̂r

w in (16)–(19), respectively,
obtained on YALE data. It can be observed from Fig. 1 that
the row and column within-class correlations are substantial.

III. TWO-STAGE RLDA FOR 2-D DATA

For high-dimensional data, �̂b in (6) and �̂w (7) are not
generally considered as good estimates of �b and �w due to
diverging spectra and noise accumulation [13]. It is unlikely
that the product in (4) is a good estimate if either one is not.
This is why LDA suffers from poor performance. RLDA only

Fig. 1. Color images of correlation matrices on YALE data. (a) Column
within-class correlation. (b) Column between-class correlation. (c) Row
within-class correlation. (d) Row between-class correlation.

improves �̂w , but not �̂b , which involves the estimates of
means. Even though each component of mean parameters
can be estimated with accuracy, the aggregated estimation
error can be very large [11]. In addition, it can be observed
from (8) that only the eigenvalues of �̂w are regularized and
its eigenvectors do not change. A simple yet effective way for
improving �̂w and �̂b simultaneously is to use the idea of
two-stage methods [7], as detailed in Section III-A.

A. Working Principle of Two-Stage RLDA

The idea of applying two-stage methods to LDA is rather
simple. If we know in advance which directions v j ’s are not
important in terms of Fisher criterion (3), we may just discard
these directions in the first stage and project the data onto
the important ones. Then, in the second stage, the estimation
of �̂w and �̂b in a lower dimensional space would be more
accurate.

In practice, such prior information in the first stage is not
available and will need to be estimated using the training
data. This could be achieved by applying certain constraints
to reduce the degrees of freedom of the transformation V.
If V is more constrained, the estimation will be more accurate
but the capability of reducing the dimensionality in the first
stage would be weaker. Thus, there exists a tradeoff between
the dimensionality of the important subspace in the first stage
and the degrees of freedom of V. Typically, the first stage is
expected to be:

1) simple and fast to implement;
2) effective to reduce the dimensionality substantially while

retaining significant discriminant information in the data.
Using (1) and (2) and substituting the solution e j

in DLDA into Fisher criterion (3) yields Fisher value
F = φbj/φw j = λI

j . This means that DLDA performs the
Fisher criterion exactly but under the independence constraint
that greatly reduces the number of free parameters of V, as
shown in Table I. If the test λI

j = 0 is not significant, we
could discard e j . Although DLDA has been proven satisfying
1) and 2) for gene expression data, our experiments in
Section IV reveal that DLDA fails to satisfy 2) for image data
due to highly correlated variables (pixels).
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TABLE I

NUMBER OF FREE PARAMETERS IN DLDA, BLDA,

AND LDA ON 2-D DATA

Again, substituting the solution ur j ⊗ I in row-2DLDA into
Fisher criterion (3) yields Fisher value F = λr j . This means
that row-2DLDA also performs the Fisher criterion exactly
but under the special separable covariance constraint that also
greatly reduces the number of free parameters of V, as shown
in Table I. If the test λr j = 0 is not significant, we could
abandon ur j . Similarly, column-2DLDA also performs the
Fisher criterion exactly. If λci = 0 is not significant, we could
discard uci .

BLDA abandons uci and ur j simultaneously. Obviously,
BLDA satisfies 1). In addition, BLDA has more advan-
tages than DLDA in that BLDA incorporates the correlations
among columns and rows inherent in 2-D data. Despite the
BMMC-type methods used in [15] and [16] satisfying 1), they
use different cost functions in the first and second stages. Fur-
thermore, the performance of YD’s criterion in terms of 2) is
not satisfactory, as mentioned in Section II-F. In Section III-B,
we develop a simple yet effective statistical test for BLDA
to determine the subspace dimensionality. Therefore, BLDA
reduces the dimensionality substantially while reserving the
significant discriminant information in the data, which makes
BLDA satisfy 2) as well. Thus, we obtain a new two-stage
RLDA for 2-D data, namely BLDA plus RLDA. The whole
algorithm is detailed in Section III-C.

B. New Discriminant Direction Screening
Procedure in BLDA

1) Preliminary: Let Wd(n,�) denote a Wishart distribution
with n degrees of freedom and scale matrix �. The following
proposition gives a property of Wishart distribution.

Proposition 1: Suppose that W = (wi j ) ∼ Wd (n, σ 2I).
Then, wii , i = 1, 2, . . . , d are i.i.d. and wii /σ

2 ∼ χ2(n).
Proof: This is the result of [24, Exercise 3.3, p. 86], and

hence the proof is omitted.
If we assume that the within-class matrix �w in Section II-A

is a scalar covariance, i.e., �w = σ 2I, then for the sample
between-class and within-class covariance �̂b and �̂w defined
in (6) and (7), we have the following proposition.

Proposition 2: tr(n�̂w)/σ 2 ∼ χ2(d(n − k)). Under the
hypothesis that μ1 = μ2 = · · · = μk , tr(�̂b) is independent
with tr(�̂w), tr(n�̂b)/σ

2 ∼ χ2(d(k − 1)), and

tr(�̂b)/(k − 1)

tr(�̂w)/(n − k)
∼ F(d(k − 1), d(n − k)). (21)

Proof: See Appendix A.

2) Proposed Procedure: In this section, we shall develop
a new statistical test to determine whether the discriminant
direction uci or ur j is significant or not. The main difference
from the tests in Section III-B1 is that our tests are developed
for 2-D data, instead of 1-D data. We consider the following
hypothesis tests individually:

H c
0i : λci = 0 versus H c

1i : λci �= 0, i = 1, . . . , dc

and

H r
0 j : λr j = 0 versus H r

1 j : λr j �= 0, j = 1, . . . , dr .

To draw statistical inference for the row direction ur j in
row-2DLDA, the following assumption is made.

Assumption 1: A set of 2-D observations {Xi }ni=1 consists
of k classes and Xi | j ∼ Ndc,dr (M j , I,�r

w), j = 1, . . . , k.
In Assumption 1, besides the assumption of normality, we

assume the column within-class covariance �c
w = I, which

means that the with-class covariance cov(vec(X)| j) has the
restrictive covariance structure �r

w⊗ I. Although this assump-
tion seems strong, it is under this assumption that the LDA is
equivalent to the row-2DLDA, as shown by Theorem 1. For
our test, whether the discriminant direction ur j is significant
or not is determined under the row-2DLDA, we thus make the
Assumption 1 required by row-2DLDA. With Assumption 1,
we have the following theorem.

Theorem 3: Under Assumption 1 and the null hypothesis
H0 : M1 = M2 = · · · = Mk , the F-statistic for row
direction ur j

û′r j �̂
r
bûr j/(k − 1)

û′r j �̂
r
wûr j /(n − k)

= λ̂r j · n − k

k − 1
∼ F

(
dc(k − 1), dc(n − k)

)
.

(22)
Proof: See Appendix B.

Similarly, Assumption 2 is made for column direction uci .
Assumption 2: A set of 2-D observations {Xi }ni=1 consists

of k classes and Xi | j ∼ Ndc,dr (M j ,�
c
w, I), j = 1, . . . , k.

Under Assumption 2, it follows that cov
(
vec(X)| j) =

I⊗�c
w , which is consistent with the condition in Theorem 2.

With Assumption 2, we have the following theorem.
Theorem 4: Under Assumption 2 and the null hypothesis

H0 :M1 = · · · =Mk , the F-statistic for column direction uci

û′ci �̂
c
bûci/(k − 1)

û′ci �̂
c
wûci/(n − k)

= λ̂ci · n − k

k − 1
∼ F

(
dr (k − 1), dr (n − k)

)
.

(23)
Proof: See Appendix C.

Furthermore, we have the following proposition.
Proposition 3: 1) Under Assumption 1 of row-2DLDA

E(�̂r
b) = �r

b +
k − 1

n
�r

w (24)

E(�̂r
w) = n − k

n
�r

w (25)

where

�r
b =

1

ndc

∑

j
n j (M j −M)′(M j −M). (26)



1674 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 8, AUGUST 2015

2) Under Assumption 2 of column-2DLDA

E(�̂c
b) = �c

b +
k − 1

n
�c

w

E(�̂c
w) = n − k

n
�c

w

where

�c
b =

1

ndr

∑

j

n j (M j −M)(M j −M)′.

Proof: See Appendix D.
Let α be the significance level, say, 0.05, and Fα(a, b) be

the upper critical value of the F distribution with a and b
degrees of freedom. Assume that {λ̂ci }dc

i=1 and {λ̂r j }dr
j=1 have

been in descending order. By Theorems 3 and 4, the subspace
dimensionality (qc, qr ) is determined by

qc = arg min
i

λ̂ci >
k − 1

n − k
Fα(dc(k − 1), dc(n − k)) (27)

qr = arg min
j

λ̂r j >
k − 1

n − k
Fα(dr (k − 1), dr (n − k)) (28)

and the desired column and row discriminant transformations
are given by Ũc = [ûc1, . . . , ûcqc ] and Ũr = [ûr1, . . . , ûrqr ].

C. Algorithm

We now briefly summarize the proposed two-stage RLDA
as follows. In the first stage, BLDA is performed and the
significant discriminant subspace is determined using the
F-tests proposed in Section III-B. In the second stage, RLDA
is performed in the obtained BLDA subspace.

Specifically, Tibshirani et al. [10] perform a regularized
DLDA at the DLDA stage of DLDA+RLDA, namely they
add the median of diagonal entries of �̂w in (7) into the
denominator φ̂w j in (9) to guard against the possibility of
large λ̂I

j simply caused by very small values of φ̂w j . Similarly,
we also perform a regularized BLDA at the BLDA stage of
BLDA+RLDA, that is, we replace �̂c

w in (18) and �̂r
w in (19)

by �̂c
w(γ1) and �̂r

w(γ1) via (8). The number of features to
be used in subsequent RLDA is determined by the proposed
F-tests in Section III-B2 at 0.05 level. The regularization
parameter in the RLDA stage is denoted by γ2. For clarity, the
whole algorithm of BLDA plus RLDA is given in Algorithm 1.

1) Computational Complexity Analysis: In this section, we
compare the time complexity of BLDA+RLDA and RLDA
under the assumption that dcdr > N > max(dc, dr , qcqr ),
which covers many real applications including all the
four face data sets used in our experiments. The cost of
Algorithm 1 is mainly in Lines 1 and 6. Line 1 takes
O(N[dcdr (dc + dr )]) [19] for the formation of within-class
and between-class matrices. Line 6 takes O(N(qcqr )

2) for the
RLDA in reduced-dimensional space. Thus, the total compu-
tational cost of Algorithm 1 is O(N[dcdr (dc+dr )+(qcqr )

2]).
For RLDA, the time complexity is O(N2dcdr ) [6]. Therefore,
when sample size N is small, e.g., N < max(dc, dr ), RLDA
could be more efficient than BLDA+RLDA. However, when
sample size N is not small and BLDA reduces the dimension-
ality substantially, BLDA+LDA could be more efficient.

Algorithm 1 BLDA+RLDA for 2-D Data

Input: Data {Xi }ni=1, partition ∪k
j=1C j and (γ1, γ2).

1: Compute sample mean of each class M̂ j , global sample
mean M̂ via (20) and �̂c

b, �̂
r
b, �̂c

w, �̂r
w via (16)-(19).

2: Replace �̂c
w and �̂r

w by �̂c
w(γ1) and �̂r

w(γ1) via (8).
3: Compute Ûc = [ûc1, . . . , ûcdc ] and Ûr = [ûr1, . . . , ûrdr ]

via (13) and (10) and their corresponding eigenvalues
{λ̂ci }dc

i=1 and {λ̂r j }dr
j=1.

4: Determine significant qc (respectively qr ) column (respec-
tively row) directions via (27) (respectively (28)). Set Ũc =
[ûc1, . . . , ûcqc ] and Ũr = [ûr1, . . . , ûrqr ].

5: Arrange xi = vec(Ũ′cXi Ũr ), i = 1, . . . , n.
6: Perform RLDA [6] with γ2 on {xi }ni=1 and compute

yi = V′xi , i = 1, . . . , n.
Output: Ũc, Ũr , V and {yi }ni=1.

IV. EXPERIMENTS

In this section, we perform experiments on a number of
synthetic and real-world data sets. For the DLDA stage of
DLDA+RLDA, we follow [10] to perform a regularized
DLDA, as mentioned in Section III-C. For BLDA+RLDA,
we use Algorithm 1 in Section III-C, where, unless else stated,
we set γ1 = 0.5. The number of features used in subsequent
RLDA for DLDA+RLDA and BLDA+RLDA is determined
by the respective F-tests at 0.05 level.

A. Synthetic Data

In this section, we investigate the classification performance
of RLDA, DLDA+RLDA, and BLDA+RLDA.

Let 1d and 0dc,dr stand for the d × d and dc × dr matri-
ces whose entries all equal 1 and 0, respectively. I2 is the
2 × 2 identity matrix. Let B be a zero matrix except for all
the elements of the upper left 2× 2 submatrix being 1

B =
(

12 02,d−2
0d−2,2 0d−2,d−2

)

. (29)

Define c = d/2 − 2 and A = 1/
√

c[I2; I2; . . . ; I2; 02; 02],
where c is the number of 1’s in each column of A. Obviously,
A is a d × 2 matrix whose two columns are orthogonal. The
data setting is as follows.

1) Simulation 1: 1-D sparse mean shift with independent
variables. The observation X from class j follows
N (M j , I, I), where M j = 2 j ·B. By (3), the theoretical
Fisher value of this problem is 20 and each variable has
Fisher value 5. Note that the means are sparse and only
four variables are useful for classification.

2) Simulation 2: 1-D nonsparse mean shift with indepen-
dent variables. The observation from class j follows
N (M j , I, I), where M j = A(2 j · 12)A′. The theoret-
ical Fisher value of this problem is still 20, but each
variable has Fisher value 5/c only. The difference from
Simulation 1 is that the means here are not sparse and
most variables are useful for classification, though their
individual discriminant capability is weak.
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Fig. 2. Results on synthetic data sets generated from Data 1 (row 1) and 2 (row 2) with different data dimensionalities. (a) and (d) dc = dr = 10.
(b) and (e) dc = dr = 20. (c) and (f) dc = dr = 30.

1) Setup: For each data setting, we generate 50 data sets.
Each data set consists of 400 observations of four classes,
and each class contains 100 observations. In each class, the
first t observations are chosen for training and the remaining
100− t are used for testing. To investigate the performance for
different training set sizes, we vary t in the set {20, 30, 40, 50}.
For RLDA and the RLDA stages of DLDA+RLDA and
BLDA+RLDA, we enumerate the regularization parameter
γ /γ2 in the set {0, 0.01, 0.1, 0.5, 0.9, 0.99} and report the
best average test error rates obtained by 1-nearest-neighbor
classifier in the 1-D space (as the true data discriminant
dimensionality is 1).

2) Results: Fig. 2 shows the classification error rates versus
the size of training data per class t . The main observations
include the following.

1) When the data dimensionality is not high
[Fig. 2(a) and (d)], all methods tend to perform
similarly. This is also the case for the higher data
dimensionalities [Fig. 2(b), (c), (e), and (f)] as the
training number per class t increases.

2) With limited sample size of Simulation 1
[Fig. 2(b) and (c)], DLDA+RLDA performs the best
(as expected), which is then followed by BLDA+RLDA,
and RLDA is the worst.

3) However, with limited sample size of Simulation 2
[Fig. 2(e) and (f)], DLDA+RLDA now becomes the
worst and BLDA+RLDA is the best, which is then
followed by RLDA.

Clearly, for both Simulations 1 and 2, BLDA+RLDA performs
better than the pure RLDA. This indicates that the utilization
of the BLDA stage is successful in improving the pure RLDA.
In particular, considering the fact that image data have column
and row correlations, as shown in Fig. 1, which appears
to be closer to Simulation 2, it would be expected that
BLDA+RLDA is more useful than RLDA and DLDA+RLDA
for image data. In Sections IV-B and IV-D, we use several
image data sets to further examine whether this is the case.

B. Performance on YALE, CMU PIE, and
XM2VTS Data Sets

In this section, we compare the proposed BLDA+RLDA
with DLDA+RLDA and BMMC+RLDA. The performance

TABLE II

SEVERAL STATISTICS FOR THE USED DATA SETS

of some closely related methods is also included, such
as BLDA [23], BPCA [25], principal component analysis
(PCA)+LDA [26], BPCA+LDA [14], BMMC+LDA [15],
and multiple rank regression (MRR) [27]. Note that MRR
has been extended to the support vector machine [28]. The
following three real-world data sets are used.

1) YALE database1 contains 165 images of 15 individuals.
Each person has 11 images captured under different
facial expressions or configurations (e.g., center-light,
w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink). We subsample
the images to the size 64× 64.

2) CMU PIE2 face database contains 41 368 face images of
68 subjects. The facial images for each subject were cap-
tured under 13 different poses, 43 different illumination
conditions, and with four different expressions. In our
experiments, we use the same subdatabase as in [13].
Each person has 43 images, consisting of the frontal
face images under different lighting conditions (without
expression variations). We subsample the images to the
size 64× 64.

3) XM2VTS database3 contains images of 295 individuals.
Each individual has eight images taken over a period of
four months. The image size is 51× 55.

All three face data sets are preprocessed with histogram
equilibrium. Several statistics of these data sets are summa-
rized in Table II, and several examples are shown in Fig. 3.

1Available from http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2Available from http://www.ri.cmu.edu/projects/project_418.html
3Available from http://www.face-rec.org/databases/
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Fig. 3. Example images from four face data sets. (a) YALE. (b) CMU PIE.
(c) XM2VTS. (d) FERET.

1) Setup: To measure the misclassification rate, the data
are randomly split into a training set containing r samples
per class and a test set containing the remaining samples.
Several values of r for each data set are investigated. The test
classification error rate, averaged over 50 such repetitions, will
be reported. For all methods except for MRR, the 1-nearest-
neighbor classifier in the lower dimensional space is used to
obtain the error rates.

In the PCA stage of PCA+LDA, since the sample covariance
is �̂t = �̂b + �̂w, with �̂b and �̂w given by (6) and (7),
we use the principal components of �̂t whose eigenvalues are
larger than ησ̂ 2, where σ̂ 2 = tr(�̂t )/d measures the average
variance across all dimensions, and we set η ∈ {1, 0.5, 0.1}.
For the BPCA stage of BPCA+LDA, a similar strategy as
in PCA+LDA is applied to the column and row covariance
matrices, respectively. In the BMMC stage of BMMC+RLDA
(respectively BMMC+LDA), the number of features in RLDA
(respectively LDA) is chosen by YD’s criterion [15].

The parameter in PCA+LDA and BPCA+LDA is (η, q)
(where η ∈ {1, 0.5, 0.1} and q ∈ {1, 2, . . . , k − 1}), the
parameter in BMMC+LDA is q (where q ∈ {1, 2, . . . , k−1})
and the parameter in BLDA and BPCA is (qc, qr )
(where qc ∈ {1, 2, . . . , dc} and qr ∈ {1, 2, . . . , dr }). For
BLDA/BPCA, PCA+LDA/BPCA+LDA, and BMMC+LDA,
we calculate the average test error rates e(qc, qr ),
e(η, q), and e(q), respectively, on the 50 test data sets
from 50 random splittings and then report the lowest ones,
which is similar as in [9] and [15]. Note that if we choose
the parameter by cross validation, the corresponding average
test error rate might not be the lowest one.

In contrast, for RLDA and the RLDA stages of
DLDA+RLDA, BMMC+RLDA, and BLDA+RLDA, we
simply report the results with a fixed parameter setting, namely
we set the regularization parameter in (8) to be 0.1 and use the
maximal number of discriminant features qmax(≤k− 1), since
we find that this simple choice usually yields good overall
results, as detailed in Section IV-C. For MRR, we use the
MATLAB code4, which implements the algorithm in [27].
Similar as in [27], the regularization parameter in MRR is
chosen in the set {1, 10, 50, 100, 1000, 10 000} by fivefold
cross validation.

4https://sites.google.com/site/feipingnie/file/TIP-MRR.rar?attredirects=0

2) Results: Fig. 4 shows the typical decreasing-ordered
Fisher values λI

j ’s in DLDA, λci ’s, λr j ’s in BLDA, and
eigenvalues λm

ci ’s, λm
r j ’s in BMMC on the three image data

sets, including the number of features determined by their
respective criteria. Fig. 5 plots typical evolvements of test
error rates versus the number of features used in RLDA,
including the error rate corresponding to the selected number
of features. Tables III–V summarize the results for all methods,
respectively, where the best method is in bold face and marked
∗ if statistically significantly better than the other ones via
the paired-sample one-tailed t-test. The - sign in Table IV
implies that the DLDA stage fails to select any feature in
some repetitions, and hence the average error rate cannot
be computed. Table VI collects several computational time
results by DLDA+RLDA, BLDA+RLDA, RLDA, and MRR,
where the time for MRR is obtained with only a regularization
parameter 10. The main observations include the following.

1) BLDA+RLDA versus DLDA/BMMC+RLDA and
RLDA.

a) Feature Selection: 1) DLDA usually requires much
more number of features than BLDA for recogni-
tion, as it ignores the high correlation among pixels
of images; 2) BMMC usually selects less number
of features than BLDA, though this does not hold
when r = 2, 3 on CMU PIE (where BMMC
includes more number of features, as shown in
Fig. 5 and Table IV). Unfortunately, it can be seen
clearly from Fig. 5 that this choice is far from the
best in terms of recognition performance; and 3)
in contrast, the choice in BLDA is found consis-
tently around the best recognition performance.

b) Recognition Performance: BLDA+RLDA per-
forms the best on all three data sets. This reveals
that reducing dimensionality for 2-D data by incor-
porating the correlation among columns and rows
has advantages and our proposed feature selection
procedure is effective.

c) Computational Efficiency: When the training sam-
ple size is small, e.g., r = 2 on YALE and
CMU PIE, RLDA is computationally more effi-
cient than BLDA+RLDA. However, when the
training sample size is not small, e.g., r = 5
on XM2VTS and CMU PIE, BLDA+RLDA is
more efficient. In contrast, DLDA generally fails to
reduce the dimensionality substantially, and hence
DLDA+RLDA is comparable with RLDA in terms
of computational efficiency.

2) BLDA+RLDA versus PCA/BPCA/BMMC+LDA and
BLDA/BPCA. BLDA+RLDA outperforms BLDA/
BPCA and PCA/BPCA/BMMC+LDA substantially.
This shows the superiority of BLDA+RLDA for image
data.

3) BLDA+RLDA versus MRR. BLDA+RLDA performs
significantly better than MRR while being much more
computationally efficient.

4) BMMC+RLDA versus BMMC+LDA. BMMC+RLDA
often outperforms BMMC+LDA substantially,
except for the case when a small number of
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Fig. 4. Distribution of Fisher values/eigenvalues on real data sets: DLDA (column 1), BLDA (column 2), and BMMC (column 3) on (a) YALE with
r = 5 (row 1), (b) CMU PIE with r = 2 (row 2), and (c) XM2VTS with r = 3 (row 3). The vertical lines signal the automatically chosen dimensionalities.

Fig. 5. Typical evolvements of test error rates versus number of used features in RLDA on real data sets. The vertical lines signal the automatically chosen
dimensionalities used in the subsequent RLDA stage. (a) YALE. (b) CMU PIE. (c) XM2VTS.

TABLE III

MEAN (AND STANDARD DEVIATION) OF ERROR RATES AND NUMBER

OF SELECTED FEATURES ON YALE

features are selected in the BMMC stage (e.g., on
XM2VTS).

C. BLDA+RLDA Under Various Parameter Settings

As shown in Algorithm 1, two regularization parame-
ters in BLDA+RLDA have to be predetermined, namely

TABLE IV

MEAN (AND STANDARD DEVIATION) OF ERROR RATES AND NUMBER

OF SELECTED FEATURES ON CMU PIE

γ1 and γ2. In addition, the number of discriminant features
q in the RLDA stage can also be viewed as a tuning
parameter. In our experiments in Section IV-B, we simply
report the results with a fixed parameter setting (γ1 = 0.5,
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TABLE V

MEAN (AND STANDARD DEVIATION) OF ERROR RATES AND NUMBER

OF SELECTED FEATURES ON XM2VTS

TABLE VI

AVERAGE TRAINING TIME IN SECONDS. r IS THE NUMBER

OF TRAINING IMAGES PER PERSON

γ2 = 0.1, and q = qmax). In this section, we examine how
these parameters affect the performance of BLDA+RLDA.
We use the 50 random splittings of YALE, CMU PIE, and
XM2VTS in Section IV-B with the training persons per
individual r = 3, on which we perform the following three
experiments.

1) Variations Over q: In this experiment, we fix
γ1 = 0.5, γ2 = 0.1, and let q vary in the set {1, 2, . . . , qmax}.
For comparison, we also include the performance of RLDA
with γ = 0.1 and variations over q . Fig. 6 shows the average
test error rates versus various values of q . The following can
be observed from Fig. 6.

1) For YALE and CMU PIE, the larger the value of q , the
better both BLDA+RLDA and RLDA perform.

2) For XM2VTS, the performance of BLDA+RLDA is sta-
ble as long as q is large enough, while the performance
of RLDA for the maximum qmax is slightly worse than
the best.

Overall, the maximum qmax yields satisfactory performance
for both BLDA+RLDA and RLDA.

2) Variations Over γ2: In this experiment, we fix
γ1 = 0.5, q = qmax, and let γ2 vary in the set {0, 0.01, 0.1, 0.5,
0.9, 0.99}. Fig. 7 shows the average test error rates versus
various values of γ2. Looking at Fig. 7, although γ2 has a
significant impact on the classification performance, the choice
γ2 = 0.1 or near 0.1 generally leads to good performance for
BLDA+RLDA. This is also the case for RLDA with γ = 0.1
or around 0.1.

Fig. 6. Test error rates versus various values of q by BLDA+RLDA and
RLDA on (a) YALE, (b) CMU PIE, and (c) XM2VTS data sets.

Fig. 7. Test error rates versus various values of γ2 (respectively γ ) for
BLDA+RLDA (respectively RLDA) on (a) YALE, (b) CMU PIE, and (c)
XM2VTS data sets.

Fig. 8. (a)–(c) Test error rates and (d)–(f) number of chosen features in
Stage 1 versus various values of γ1 by BLDA+RLDA on YALE, CMU PIE,
and XM2VTS data sets.

3) Variations Over γ1: In this experiment, we fix
γ2 = 0.1, q = qmax, and let γ1 vary in the set {0, 0.01,
0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. The results for various values
of γ1 are shown in Fig. 8, from which it can be seen that
γ1 substantially affects the classification performance and
dimensionality reduction in the first stage. Small values of
γ1 (e.g., 0 and 0.01) are not effective. However, when γ1 is
around 0.5, the classification performance is satisfactory, and
when γ1 ≥ 0.3, the number of chosen features in the first stage
tends to be stable.

Overall, the three experiments reveal that the fixed setting
γ1 = 0.5, γ2 = 0.1, q = qmax performs satisfactorily
on YALE, CMU PIE, and XM2VTS data sets. Due to its
simplicity, we use this setting in all our experiments on
real data.

D. Further Comparison on FERET and USPS Data Sets

In this section, we further investigate the performance of
DLDA+RLDA, BMMC+RLDA, BLDA+RLDA, and RLDA
on the FERET and USPS data sets.
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TABLE VII

MEAN (AND STANDARD DEVIATION) OF ERROR RATES AND NUMBER

OF SELECTED FEATURES ON FERET DATABASE

1) FERET database [29] consists of 14 051 grayscale
images taken under different expressions, poses, illu-
minations, and occlusion. In our experiments, we use
the Fa/Fb subdatabase, which contains 1195 individuals.
Each person has two images. We subsample the images
to the size 180× 170.

2) USPS handwritten digit database5 contains
11 000 images of 10 digits, derived from the well-
known USPS set of handwritten digits. Each digit has
1100 grayscale images with size 16× 16.

Several statistics of the two data sets are summarized in
Table II. The FERET database is preprocessed with histogram
equilibrium, and several examples are shown in Fig. 3.

FERET and USPS exhibit very different data characteristics
from the three data sets in Section IV-B: FERET contains
a large number of people (1195) and USPS has sufficient
data samples while its data dimensionality (256) is not
very high. The experiment on USPS database is similar as
in Section IV-B. For FERET Fa/Fb database, we use Fa as the
gallery set and Fb as the probe set. We are interested in inves-
tigating, given some people for training, which method has the
best generalization performance on new people. In addition,
to examine the performance for different training set sizes,
r people are randomly chosen for training, and the remaining
people (i.e., 1195− r ) are used for testing. The average test
error across 50 such repetitions will be reported. Note that
MRR requires using all classes of the data for training while
only a few classes are available in this case. Thus, MRR is
not used in this experiment.

The results are summarized in Tables VII and VIII,
respectively. As in Section IV-B, the best method is in bold
face and marked ∗ if statistically significantly better. The
- sign in Table VIII indicates that the BMMC stage fails
to include any feature in all 50 repetitions, and hence the
average error rate cannot be computed. It can be observed from
Tables VII and VIII that the results are generally consistent
with those in Section IV-B. BLDA+RLDA performs the
best. DLDA seems inefficient in terms of initial dimension
reduction. BMMC disappointedly cannot screen out any useful
feature on USPS since all eigenvalues λm

ci ’s and λm
r j ’s are

negative.

5Available from http://www.cs.nyu.edu/∼roweis/data.html

TABLE VIII

MEAN (AND STANDARD DEVIATION) OF ERROR RATES AND NUMBER

OF SELECTED FEATURES ON USPS

E. Dimension Reduction in the First Stage

In this section, we compare in detail our proposed statistical
tests with YD’s criterion [13] on determining the discriminant
subspace dimensionality.

1) Theoretical Analysis: We focus on analyzing
row-2DLDA only, but the analysis is applicable to column-
2DLDA as well. For row-2DLDA, by (24) and (25) in
Proposition 3, we have that E(�̂r

b)→ �r
b and E(�̂r

w)→ �r
w ,

as n goes to infinity. Thus, YD’s criterion approximately uses
the positive eigenvalues of �r

b − �r
w.

Let us consider Simulation 1 with d = 10. By (26), we have
�r

b = B, where B is given by (29). The largest eigenvalue
of �r

b is 2, and all the remaining ones are 0. Since �r
w = I,

�r
b−�r

w has a positive eigenvalue. Now, consider Simulation 1
with d = 40. By (26), we get �r

b = 0.25 · B, where B is
given by (29). The largest eigenvalue of �r

b is 0.5, and all the
remaining ones are 0. Since �r

w = I, all the eigenvalues of
�r

b−�r
w are negative. Therefore, in this case, it is impossible

for YD’s criterion to include any feature.
With Simulation 1, only four discriminant features are

useful for discrimination and all the remaining ones are not
useful. Due to the divisor dc in (26), the largest eigenvalue of
�r

b becomes smaller as dc increases. This is the reason why
YD’s criterion fails when d = 40. In contrast, our proposed
test for row directions compares �r

b with �r
w in a completely

different manner. It corrects �̂r
b in (24) by k−1 and �̂r

w in (25)
by n − k. This makes the second term in (24) and the term
in (25) the same, and thus makes our proposed test free from
the above problem.

2) Empirical Analysis: To examine the above theoretical
analysis, we use the 50 data sets from Simulation 1 with
training number per class t = 50 to compare BMMC+RLDA
with BLDA+RLDA. The results are shown in Table IX, from
which it can be observed that: 1) when d = 10, YD’s criterion
and our proposed tests perform similarly, and BMMC+RLDA
and BLDA+RLDA obtain similar error rates and 2) however,
when d = 40, BMMC+RLDA fails completely due to the
failure of YD’s criterion to include any feature, in strong
contrast with the satisfactory performance of our proposed
tests.

The above theoretical and empirical analyses provide an
explanation why BMMC tends to select too small number of
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TABLE IX

MEAN (AND STANDARD DEVIATION) OF NUMBER

OF SELECTED FEATURES AND ERROR RATES ON DATA 1

features on YALE and XM2VTS data sets and even fails to
select any feature on USPS data set.

V. CONCLUSION

To improve RLDA on 2-D data such as images, we pro-
posed in this paper a new two-stage method, namely BLDA
plus RLDA, in which both the BLDA and RLDA stages
are based on the well-known Fisher criterion. The key to
our method is that BDLDA can incorporate the correlations
among columns and rows into reducing the dimensionality of
2-D data in an appropriate manner via a simple yet effective
feature selection procedure. The empirical results on several
benchmark image data sets demonstrate that BDLDA can
reduce the data dimensionality substantially while keeping the
useful discriminant information satisfactorily, and hence the
proposed two-stage method, BLDA plus RLDA, is compared
favorably with some closely related methods.

Nowadays, the observations in many real-world data are
3-D or higher order tensors. For example, color images and
grayscale video sequences are 3-D and color video sequences
are 4-D. The BMMC+LDA has been adapted to handle tensor
structure data in [14]. It would be interesting to extend our
BLDA+RLDA to accommodate such data.

APPENDIX A
PROOF FOR PROPOSITION 2

Proof: When d = 1, this is the classical result of univariate
ANOVA. When d > 1, from [23, Exercise 5.10, p. 222],
we have: 1) �̂w is independent with �̂b and 2) n�̂w ∼
Wd(n − k, σ 2I) and n�̂b ∼ Wd(k − 1, σ 2I). Using
Proposition 1 and the additive property of χ2 distribution,
we have tr(n�̂w)/σ 2 ∼ χ2(d(n − k)) and tr(n�̂b)/σ

2 ∼
χ2(d(k− 1)). By 1), we have that tr(�̂w) is independent with
tr(�̂b) and hence (21) holds. This completes the proof. �

APPENDIX B
PROOF FOR THEOREM 3

Proof: Under Assumption 1, for an arbitrary nonzero
vector u ∈ R

dr , we have Xi u ∼ Ndc(M j u, (u′�r
wu) · I).

Under the null hypothesis H0 : M1 = M2 = · · · = Mk ,
substituting xi = Xi u, μ j = M j u, and σ 2 = u′�r

wu
into Proposition 2, we obtain tr(n�̂w) = ndcu′�̂r

wu and
tr(n�̂b) = ndcu′�̂r

bu, ndcu′�̂r
wu/u′�cu ∼ χ2(dc(n − k)),

ndcu′�̂r
bu/u′�cu ∼ χ2(dc(k − 1)), u′�̂r

bu is independent
with u′�̂r

wu, and

u′�̂r
bu/(k − 1)

u′�̂r
wu/(n − k)

∼ F
(
dc(k − 1), dc(n − k)

)
.

Replacing u by ûr j and using (12), we obtain the F-statistic
for row direction ûr j in (22). The proof is completed. �

APPENDIX C
PROOF FOR THEOREM 4

Proof: The proof is similar as Theorem 3. Under
H0 and Assumption 2, u′�̂c

bu is independent with u′�̂c
wu,

ndr u′�̂c
bu/u′�r u ∼ χ2(dr (k − 1)), ndr u′�̂c

wu/u′�r u ∼
χ2(dr (n − k)), and thus we obtain the F-statistic for column
direction ûci in (23). The proof is concluded. �

APPENDIX D
PROOF FOR PROPOSITION 3

Proof: 1) For clarity, denote Xi | j by X j i . Let M =
∑k

j=1 n j M j/n and T j = M j − M, from which we have
∑k

j=1 n j T j = 0. The assumption that X j i ∼ Ndc,dr (M j ,
I,�r

w), j = 1, . . . , k, i = 1, . . . , n j , i.i.d. can be rewritten
as
{

X j i =M+ T j + ε j i

ε j i ∼ N (0, I,�r
w), j = 1, . . . , k, i = 1, . . . , n j , i.i.d.

(30)

From (30), we have M̂ j = M + T j + ε̄ j and M̂ = M + ε̄,
where M̂ j and M̂ are given by (20) and, similarly

ε̄ j = 1

n j

n j∑

i=1

X j i , ε̄ = 1

n

∑

j

n j∑

i=1

X j i . (31)

By (31), we have ε̄ j ∼ N (0, I,�r
w/n j ) and ε̄ ∼ N (0,

I,�r
w/n).

Next, we find the expectation of �̂r
w in (19)

E(�̂r
w) = 1

ndc

∑

j

∑n j

i=1
E[(ε j i − ε̄ j )

′(ε j i − ε̄ j )]

= 1

ndc

∑

j

[ ∑n j

i=1
E(ε′j iε j i)− n j E(ε̄′j ε̄ j )

]

= 1

ndc

∑

j

[
n j dc�

r
w − n j dc�

r
w/n j

]

= n − k

n
�r

w.

The expectation of �̂r
b in (17) is

E(�̂r
b) = E

[ 1

ndc

∑

j
n j (T j + ε̄ j − ε̄)′(T j + ε̄ j − ε̄)

]

= 1

ndc

∑

j
n j

[
T′j T j + E(ε̄ j − ε̄)′(ε̄ j − ε̄)

]

= �r
b +

1

ndc

[∑

j
n j E(ε̄′j ε̄ j )− nE(ε̄ ′ε̄)

]

= �r
b +

1

ndc

[∑

j

n j dc�
r
w/n j − ndc�

r
w/n

]

= �r
b +

k − 1

n
�r

w.

2) The proof is similar as 1) and hence omitted here. �
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