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1 Introduction

This report surveys important results in the literature on the problem of hedging contingent claims in
incomplete markets. Consider a probability space (Ω,F , P ) and let X be a stochastic process describing the
fluctuation of the stock price. Given a contingent claim H, the problem is to find an “optimal” admissible
trading strategy, which is a dynamic porfolio of stock and bond (with fixed price), that can almost surely
achieve the value H at some terminal time T .

Under the basic assumption of viability (i.e. absence of arbitrages), there exists an equivalent probability
measure P ∗ ≈ P under which X is a martingale. This means that X is a semimartingale. When the market
is complete, i.e., all contingent claims are attainable, the problem is completely solved by Harrison and
Kreps [HK79]. In complete markets, it was shown that such a martingale measure is unique. Thus Harrison
and Kreps proved that any contingent claim H in a complete market can be expressed as a stochastic integral
of X. This allows us to find self-financing strategies, i.e, those that essentially incurr no cost. This theory
underlies the insights behind the result of option pricing theory starting with the seminal papers by Black
and Scholes [BS73] and Merton [M73].

When the market is incomplete, the problem is more delicate. The martingale measure P ∗ is no longer
unique. A general claim is not necessarily a stochastic integral of X, and there may not exist self-financing
admissible trading strategy for a given H. An admissible trading strategy in general must incur some
intrinsic risk of the market.

The first attack on the problem was by Follmer and Sondermann [FS86], who considers a special case in
which X is already a martingale under P in an incomplete market. These authors introduced to notion of
risk-minimizing strategies, which minimizes the risk in a sequential sense. It was shown that such a risk-
minimizing admissible strategy always exists. Moreover, it is also mean-self-financing, which means the corre-
sponding cost process is a martingale. The optimal strategy can now be determined using Kunita-Watanabe
projection technique. In addition, the optimal strategy changes according to an absolutely continuous change
of the underlying martingale measure P . We discuss these results in Section 3.

When X is in general a semimartingale, the notion of risk-minimization introduced in [FS86] is not directly
applicable. However, Follmer and Schweizer [FS90] extended this notion to risk-minimization in a local
sense by considering small perturbations to the strategies. Interestingly, locally risk-minimizing strategies
are shown to be also mean-self-financing. From here it is possible to derive the necessary and sufficient
conditions for the existence and uniqueness of locally risk-minimizing strategies. These conditions essentially
involve a decomposition of contingent claim H into orthogonal components that is somewhat similar to (but
not the same as) the Kunita-Watanabe decomposition.

There are two approaches to finding the optimal strategy in the locally risk-minimizing sense. One can
characterize the optimal strategy by an optimality equation and focus on solving it. This is the approach
pursued in [S91]. This approach, along with the notion of locally risk-minimization, is covered in Section 4.

The other approach, which seems more natural, is to use a Girsanov transformation in order to shift the
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problem back to the space of martingale measure. As mentioned earlier, due to the incompleness of the
market, there may be more than one equivalent martingale measure. Hence, the notion of minimal martingale
measure introduced by Follmer and Schweizer [FS90] to describe the equivalent martingale measure that
preserves the structure of the original probability space P as far as possible. These authors showed how to
compute the optimal strategy using this change of measure. Section 5 is devoted to these powerful results.

In Section 6, we consider a special case where the incompleteness of the market comes from incomplete
information [FS90]. The assumption is that the contingent claim H is attainable with respect to a larger
filtration that the filtration that the stock price process X actually adapted to. This proves to be a nice
application of the theory developed in the previous sections. The claim H can be shown to be decomposed
into nice form that allows the existence and uniqueness of optimal strategy, which can be determined by
projection technique into the original filtration.

Finally, Section 7 concludes the report with a few remarks.

2 Basic definitions

Let X = (Xt)0≤t≤T be a real-valued stochastic process with continuous path on some probability space
(Ω,F , P ) with right-continuous filtrations (Ft)0≤t≤T such that FT = F . The process X describes the price
fluctuation of a given stock.

We assume X to be a semimartigale with the Doob-Myer decomposition:

X = X0 + M + A (1)

where (1) M is a square-integrable martingale process (cf. [KS88]), (2) A is a predictable process of bounded
variation |A|. All this amounts to

E[X2
0 + 〈X〉T + |A|2T ] < ∞ (2)

Here 〈X〉 = 〈M〉 denotes the quadratic variation process of X resp. M (cf. [KS88]).

Let P denote the finite measure on (Ω × [0, T ],P = F × B([0, T ])) given by

P [A] = E[

∫ T

0

1A(ω, t)d〈X〉t(ω)] (3)

A trading strategy is of the form ϕ = (ξ, η), where (ξt)t and (ηt)t describe the successive amounts invested
into the stock and into the bond. Here we assume the bond price to be fixed to 1. Thus,

Vt = ξtXt + ηt (4)

is the value of the porforlio at time t. We need several technical assumptions:

Definition 1 ϕ = (ξ, η) is called a strategy if
(a) ξ is a predicable process, and ξ ∈ L2(P ),
(b) η is adapted,
(c) V = ξX + η has right-continuous paths and Vt ∈ L2(P ), 0 ≤ t ≤ T .

The accumulated gain can be computed as
∫ t

0
ξsdXs, 0 ≤ t ≤ T . When X is actually a martingale, the

accumulated gain process is also a martingale with mean 0 and variance E
∫ t

0
ξ2
sd〈X〉s at each fixed t.

The accumulated cost is defined as

Ct = Vt −

∫ t

0

ξsdXs (5)
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Definition 2 A strategy ϕ is self-financing if its cost process (Ct)0≤t≤T is time-invariant.

A contingent claim at time T is given by a random variable H ∈ L2(Ω,FT , P ). We are concerned with only
admissible strategies that can achieve H at T , that is, VT (ϕ) = H P -a.s.

We start with some well-known classic results (cf. [E02]). Under the assumption of viability (i.e there are no
arbitrages), there exists a probability measure P ∗ ≈ P such that X is a martingale under P ∗. In a complete
market, such P ∗ is unique, and one can determine the unique self-financing ϕ based soly on measure P ∗.
Much of the theory of complete market was initiated and developed in the seminal paper by Harrison and
Kreps [HK79]. It was a generalization of the economic insights underlying the Black-Scholes formula for
pricing European stock option.

When the market is incomplete, the equivalent martingale measure P ∗ is no longer unique. The problem now
is more delicate, because we can imagine that each martingale measure P ∗ may induce a different admissible
strategy. Thus, we need to have a way to choose the optimal one among them.

From an economic viewpoint, the existence of self-financing strategies in complete markets implies that these
markets are risk-free. On the other hand, incomplete markets have intrinsic risk. The problem is to find a
strategy that minimizes this risk, which is to be defined appropriately.

3 Incomplete market: Case P = P
∗

In this section, we consider a special case in which P is already a martingale measure P = P ∗. In other words,
X is P−martingale.1 This case was considered and completely solved by Follmer and Sondermann [FS86],
who first introduced the important notions of risk-minimizing strategy and mean-self-financing strategy.

3.1 Risk-minimization and Mean-self-financing concept

Consider an H-admissbile strategy ϕ = (ξ, η). The remaining risk of ϕ at a fixed time t is defined by

Rt(ϕ) = E[(CT − Ct)
2|Ft] (6)

A strategy ϕ̃ is called an admissible continuation of ϕ if ϕ̃ coincides with ϕ al all times < t and VT (ϕ̃) = H
P -a.s.

Definition 3 A strategy ϕ is called risk-minimizing if ϕ at any time minimizes remaining risk. That is, for
any 0 ≤ t ≤ T ,

Rt(ϕ) ≤ Rt(ϕ̃)

P -a.s. for every admissible continuation ϕ̃ of ϕ at time t.

Remark. Any self-financing strategy is clearly risk-minimizing since Rt(ϕ) ≡ 0. The converse is not true
in incomplete markets. We will see why shortly.

Definition 4 ϕ is mean-self-financing if its corresponding cost process C = (Ct)0≤t≤T is a martingle.

The following lemmas are useful.

1The Doob-Myer decomposion becomes merely X = M in this case.
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Lemma 5 ϕ is mean-self-financing if and only if (Vt)0≤t≤T is a square-integrable martingale.

Proof: Clear from the definition of the cost and value processes.

Lemma 6 An admissible risk-minimizing strategy is mean-self-financing.

Proof: Let ϕ be a risk-minimizing strategy. Fix 0 ≤ t0 ≤ T . Define ϕ̃ to be an admissible continuation of
ϕ at t0, such as for t ≥ t0,

ξ̃t = ξt

η̃t = C̃t +

∫ t

0

ξsdXs − ξtXt

C̃t = E[CT |Ft]

Thus,

Rt0(ϕ) = E[(CT − Ct0)
2|Ft0 ]

= E[(C̃T − C̃t0)
2|Ft0 ] + (C̃t0 − Ct0)

2

≥ Rt0(ϕ̃)

The equality holds iff C̃t0 = Ct0 for all t0 ≤ T . Thus, ϕ is mean-self-financing.

These two lemmas imply that the value process of a risk-minimizing strategy has to be a martingale. Thus,
Vt(ϕ) = E[H|Ft]. This motivates the use of Kunita-Watanabe decomposition to find risk-minimizing strate-
gies.

3.2 Kunita-Watanabe Projection

We appeal to the Kunita-Watanabe decomposition of the claim H (cf. [KS88], page 181): Given that
(Xt)0≤t≤T is a square-integrable martingale, H can be uniquely represented as the following form:

H = E[H] +

∫ T

0

ξ∗sdXs + LH (7)

with ξ∗ ∈ L2(P ), LH ∈ L2(P ) has expectation 0 and is orthogonal to the space {
∫ t

0
ξsdXs|ξ ∈ L2(P )} of

stochastic integrals with respect to X.

Define

V ∗
t = E[H|Ft] = V ∗

0 +

∫ t

0

ξ∗sdXs + LH
t (8)

where LH
t = E[LH |Ft] is a right-continuous version of the square-integrable martingale with zero expectations

which is orthogonal to X.

Since (Vt)0≤t≤T is an adapted process uniquely determined by H, ξ is uniquely determined from H using
the so-called Kunita-Watanabe projection:

ξ∗ =
d〈V,X〉

d〈X〉
(9)

In fact, ξ∗ forms the optimal strategy, but before proving this, we need one more useful concept:
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Definition 7 Call the following process

R∗
t = E[(LH − LH

t )2|Ft]

the intrinsic risk process of a contingent claim H.

Theorem 8 There exists unique admissible strategy ϕ∗ which is risk-minimizing, namely,

ϕ∗ = (ξ∗, V ∗ − ξ∗X)

For this strategy, the remaining risk at any time t ≤ T is given by

Rt(ϕ
∗) = R∗

t

Proof: ϕ∗ is clearly admissible, i.e., Vϕ∗(T ) = H P -a.s. Let ϕ be any admissible continuation of ϕ∗ at time
t. A little algebra reveals that

CT − Ct = VT − Vt −

∫ T

t

ξsdXs

= V ∗
0 +

∫ T

0

ξ∗sdXs + LH − Vt −

∫ T

t

ξsdXs

=

∫ T

t

(ξ∗s − ξs)dXs + (LH − LH
t ) + (V ∗

t − Vt)

The fact that X and LH
t are orthogonal, and the stochastic integral wrt X is also a martingale imply

E[(CT − Ct)
2|Ft] = E[

∫ T

t

(ξ∗s − ξs)
2|d〈Xs〉|Ft] + R∗

t + (V ∗
t − Vt)

2

≥ R∗
t

This shows that ϕ is risk-minimizing. To show that this optimal strategy is unique, let ϕ̃ = (ξ̃, η̃) be another
admissible risk-minimizing strategy. The above equation implies that ξ∗t = ξ̃t a.s. for all 0 ≤ t ≤ T .
Furthermore, the value process Ṽ is also a martingale by lemma 5. But V ∗

T = ṼT = H P -a.s. This implies
that V ∗

t = Ṽt P -a.s. Hence, η∗
t = η̃t P a.s. for all 0 ≤ t ≤ T .

The results for attainable claims in complete market (e.g. [HK79]) can be obtained directly as a special
case of the theorem above.

Corollary 9 The following are equivalent:
(1) The risk-minimizing admissible strategy ϕ∗ is self-financing
(2) The intrinsic risk of the contingent claim H is zero.
(3) The contingent claim H is attainable, i.e., P -a.s.

H = E[H] +

∫ T

0

ξ∗sdXs (10)

Remark. Another important result proved by Follmer and Sonderman is that the optimal strategy ϕ∗ does
change with respect to the change of the martingale measure P = P ∗. This is the reason why the situation
becomes more delicate when we move into the general case in the next section.
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4 General case: X is semimartingale

Now we consider the more general situation where X is a semimartingale, as set up in Section 2.

The question is how to identify the criterion for an “optimal” admissible strategy? While the risk-minimization
concept provides a natural criterion for the case X is a martingale, it does not apply here: Recall the re-
maining risk equation 6, where the cost process can now be written as:

Ct = Vt −

∫ t

0

ξsdMs −

∫ t

0

ξsdAs (11)

The problem is that we cannot control the influence of the term
∫

ξdA involved in the process R(ϕ). Tech-
nically, there is no immediate analog to the Kunita-Watanabe decomposition that allows us to decompose a
claim H into a stochastic integral of X and an orthogonal component. Intuitively, the class of variations of
trading strategy is too large.

In [[]S91], Schweizer introduced the concept of locally risk-minimizing strategy that is “risk-minimizing”
under a small perturbation. Interestingly, such a locally risk-minimizing strategy turns out to be also mean-
self-financing, as defined in Section 3. Based on this criterion, there are two main approaches for finding
optimal strategies. The first approach, by Schweizer in the same paper, involves deriving and solving an
optimal equation for optimal strategies. This approach is addressed in this section.

The second approach, by Follmer and Schweizer [FS90], which seems to be more natural, uses a Girsanov
transformaton to shift the problem back to a martingale measure P̂ , where standard techniques developed in
Section 3 can be applied. Since such a measure is not unique in incomplete market (cf. c̃iteE02), the authors
introduce the notion of minimum martingale measure that preserves the structure of the original measure P
as far as possible under the constraint that X is P̂ -martingale. This approach is addressed in Section 5.

4.1 Locally Risk-minimization

Definition 10 A strategy ∆ = (δ, ǫ) is called a small perturbation if it satisfies the following conditions:

(i) δ is bounded (ii)
∫ T

0
|δs|d|A|s is bounded (iii) δT = ǫT = 0

Remark. The first two conditions aim to “control” the gain caused by the “drift” A of X. The third
condition ensures that if ϕ is an admissible strategy, then ϕ + ∆ also is, and the restriction of ∆ to any
subinerval of [0, T ] is again a small perturbation.

The idea is to introduce the local variation of a strategy. For each partition τ = (0 = t0 < t1 < ... < tN = T )
of [0, T ], define the mesh to be |τ | = max |ti − ti−1|.

A sequence (τn)n∈N of partitions is called increasing if τn ⊂ τn+1 for all n. It will be called 0-convergent if
limn→∞ |τn| = 0.

Define a restriction of ∆ to a subinterval (s, t] to be ∆|(s,t] = (δ|(s,t], ǫ|[s,t)), where

δ|(s,t](ω, u) = δu(ω)1(s,t](u)

ǫ|[s,t)(ω, u) = ǫu(ω)1[s,t)(u)

Definition 11 Given a strategy ϕ, a small perturbation ∆ and a partition τ of [0, T ], define the risk-quotient

rτ [ϕ,∆](ω, t) :=
∑
ti∈τ

Rti
(ϕ + ∆|(ti,ti+1]) − Rti

(ϕ)

E[〈M〉ti+1
− 〈M〉ti

|Fti
]

(ω)1(ti,ti+1](t) (12)
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Definition 12 The strategy ϕ is called locally risk-minimizing if

lim inf
n→∞

rτn [ϕ,∆] ≥ 0 (13)

P -a.e. for every small perturbation ∆ and every increasing 0-convergent sequence (τn) of partitions of [0, T ].

Remark. The risk-quotient can be viewed as a measure for the total change of riskiness if ϕ is perturbed
by ∆ along a partition τ . Note that definition 12 is the infinitesimal analogue of definition 3.

Given the following additional assumptions, a locally risk-minimizing strategy is mean-self-financing.

Lemma 13 Assume that for P -almost all ω, the measure P induced by 〈M〉.(ω) has the whole interval [0, T ]
as its support. If ϕ is locally risk-minimizing, then it is mean-self-financing.

Proof:The proof is also an analogue of that of Lemma 6. Construct a mean-self-financing admissible strategy
ϕ̂ such that ξ̂ = ξ. To satisfy that, for all 0 ≤ t ≤ T let

η̂t = E[CT (ϕ)|Ft] +

∫ t

0

ξsdXs − ξtXt (14)

So ∆ = ϕ̂ − ϕ is a small perturbation. Let τn be the n-th dyadic partition of [0, T ], and denote [d, d′] be a
subinterval [tj , tj+1] of partition τn. We have

Vd(ϕ + ∆|(d,d′]) = Vd(ϕ̂)

VT (ϕ + ∆|(d,d′]) = VT (ϕ̂)

So CT (ϕ + ∆|(d,d′]) − Cd(ϕ + ∆|(d,d′]) = CT (ϕ̂) − Cd(ϕ̂)

So Rd(ϕ + ∆|(d,d′]) = Rd(ϕ̂). Now

Rd(ϕ̂) = E[(CT (ϕ̂) − Cd(ϕ̂))2|Fd]

= E[(CT (ϕ) − Cd(ϕ) + Cd(ϕ) − Cd(ϕ̂))2|Fd]

= Rd(ϕ) + 2(Cd(ϕ) − Cd(ϕ̂))E[(CT (ϕ) − Cd(ϕ))|Fd] + (Cd(ϕ) − Cd(ϕ̂))2

= Rd(ϕ) − (Cd(ϕ) − Cd(ϕ̂))2

Hence

Rd(ϕ + ∆|(d,d′]) − Rd(ϕ) = Rd(ϕ̂) − Rd(ϕ)

= −(Cd(ϕ) − Cd(ϕ̂))2

= −(Cd(ϕ) − E[CT (ϕ)|Fd])
2

Thus

rτn [ϕ,∆] = −
∑
d∈τn

(Cd(ϕ) − E[CT (ϕ)|Fd])
2

E[〈M〉d′ − 〈M〉d|Fd]
.1(d,d′] (15)

Suppose that for some dyadic rational d0, there is a set B with P (B) > 0 such that for all ω ∈ B,

Cd0
(ϕ) 6= E[CT (ϕ)|Fd0

] (16)

By the right-continuity of C.(ϕ) and E[CT (ϕ)|F.] this imply that for each ω ∈ B equation 16 holds true for
all d ∈ [d0, d0 + γ(ω)] for some constant γ(ω). But then equation 15 contradicts the definition 12.
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Hence, P (B) = 0 for any dyadic rational d0, which implies P (B) = 0 for any 0 ≤ t ≤ T , again by the
right-continuity of C.(ϕ) and E[CT (ϕ)|F.].

This lemma and its proof tell us that, we can find a locally risk-minimizing strategy by varying only the ξ
component, because η can be uniquely determined to ensure that C(ϕ) is a martingle. Several additional
assumptions are needed to “control” the influence of the drift component A of X.

Assumption. (i) A is continuous
(ii)A is absolutely continous with respect to 〈M〉 with a density α satisfying EM [|α|. log+ ‖α|] < ∞.
(iii)X is continous at T P -a.s.

Technically, the risk-quotient rτ [ϕ,∆] can be decomposed into 2 terms, one of which depends on only ξ, δ,
and another depending on ǫ and drift A, which is negligible by the assumption. The local risk-minimization
of ϕ is reduced to that of the ξ under a local perturbation. Along this line, Schweider [S90] was able to
obtain a martingale-theoretic characterization of locally risk-minimizing as follows:

Proposition 14 Let ϕ be an H-admissible strategy. Under the assumption above, ϕ is locally risk-minimizing
if and only if ϕ is mean-self-financing and the martingale C(ϕ) is orthogonal to M under P .

This important proposition makes it possible to derive the the necessary and sufficient condition for the
existence of optimal trading strategies.

4.2 Necessary and sufficient conditions

Definition 15 An admissible strategy ϕ is called optimal if the associated cost process C(ϕ) is a martingale
which is orthogonal to M under P .

Theorem 16 The existence of an optimal strategy is equivalent to a decomposition of contingent claim H:

H = H0 +

∫ T

0

ξsdXs + LH (17)

where H0 = E[H|F0] ∈ L2(Ω,F0, P ), ξ ∈ L2(P ), and LH
t = E[LH |Ft] is a square-integrable (right-

continuous) martingale of zero expectation and is orthogonal to M under P .

Proof: (⇒) : Given the representation 17 of H, it is easy to see that the optimal strategy is ϕ = (ξ, V −ξX),
where

Vt = H0 +

∫ t

0

ξsdXs + LH
t (18)

The cost process becomes Ct = H0 + LH
t satisfying the optimality criterion.

(⇐) : An optimal strategy ϕ means Ct = E[CT |Ft] is a martingale orthogonal to M , which leads to the
decomposition

H = VT = CT +

∫ T

0

ξsdXs

= H0 +

∫ T

0

ξsdXs + (CT − C0)
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Remark. Note the similarity between equations 17 and 18 with 7 and 8 in the previous section. The
important difference is that here X is no longer a martingale. As a result, neither is V . This implies that
we can no longer apply the Kunita-Watanabe projection to find ξ and η.

4.3 Deriving the optimal equation

Finding the optimal trading strategy amounts to finding the decomposition 17 for claim H. An approach
taken in [S91] is to attack this equation directly.

Applying the Kunita-Watanabe decomposition to H and the square-integrable martingale M :

H = N0 +

∫ T

0

µsdMs + NH (19)

where Nt = E[NH |Ft] is a martingale of zero expectation and is orthogonal to M . Applying the Kunita-
Watanabe decomposition to

∫
ξdA to have:

∫ T

0

ξsdAs = N ξ
0 +

∫ T

0

µξ
sdMs + N ξ (20)

where N ξ
t = E[N ξ|Ft] is a martingale of zero expectation and is orthogonal to M . Combining equation 17

and 20 gives

H = (H0 + N ξ
0 ) +

∫ T

0

(ξs + µξ
s)dMs + (LH + N ξ) (21)

Since the Kunita-Watanabe decomposition is unique, from this and equation 19, we have for any 0 ≤ s ≤ T ,
P -almost surely

ξs + µξ
s = µs (22)

One can now focus on solving this optimality equation, which is the approach taken in [S91].

5 Minimal martigale measure approach

This section presents a more natural approach introduced in [FS90]. The basic idea is to use a Girsanov
transformation to shift the problem back into a martingale measure from which the optimal trading strategy
can be computed in a manner similar to techniques in Section 3. In incomplete markets, there may be
more than one equivalent martingale measure. The martingale measure that we consider has to preserve the
structure of the original P as much as possible. Now we will make all this precise.

Definition 17 A martingale measure P̂ ≈ P is called mimimal if
(i) P̂ = P on F0

(ii) If L is a square-integrable P -martingale orthorgonal to M under P ,(i.e. 〈L,M〉 = 0 P -a.s.) then L is a
P̂ -martingale.

Note that an equivalent martingale measure P ∗ is uniquely determined by the right-continuous square-
integrable P -martingale G∗ with

G∗
t = E[

dP ∗

dP
|Ft] (23)
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The Doob-Myer decomposition of X under P is X = X0 + M + A. Hence, the Doob-Myer decomposition of
M under P ∗ is M = −X0 + X + (−A). The theory of Girsanov transformation shows that the predictable
process −A of bounded variation can be computed in terms of G∗:

−At =

∫ t

0

1

Gs−

d〈M,G∗〉s (0 ≤ t ≤ T ) (24)

Since 〈M,G∗〉 ≪ 〈M〉 = 〈X〉, the process A must be absolutely continuous wrt the variance process 〈X〉 of
X. Hence, A can be written as

At =

∫ t

0

αsd〈X〉s (0 ≤ t ≤ T ) (25)

for some predictable process α = (αt)0≤t≤T .

This sets up the following theorem on the existence and uniqueness of the minimal martingale measure.

Theorem 18 P̂ exists if and only if

Ĝt = exp(−

∫ t

0

αsdMs −
1

2

∫ t

0

α2
sd〈X〉s) (0 ≤ t ≤ T ) (26)

is a square-integrable P -martingale. Under this condition, P̂ is uniquely determined by

ĜT =
dP̂

dP
(27)

Remark. This result generalizes the Girsanov change of measure for Brownian motion with drift [E02,KS88].
Proof: (Sketch). (⇒) : Assume that the equivalent martingale measure P ∗ is minimal. Let G∗ be the
square-integrable martingale associated with P ∗ ≈ P . According to the Kunita-Watanabe decomposition,
we have

G∗
t = G∗

0 +

∫ t

0

βsdMs + Lt (0 ≤ t ≤ T ) (28)

where L is a square-integrable martingale under P orthogonal to M and β is a predictable process with

E[

∫ T

0

β2
sd〈M〉] < ∞ (29)

We have

At =

∫ t

0

1

G∗
s−

d〈G∗,M〉s =

∫ t

0

1

G∗
s−

βsd〈X〉s

This implies

α = −
β

G∗
−

(30)

Since G∗ ≥ 0 P -a.s due to P ∗ ≈ P and since 〈M〉 = 〈X〉, the condition 29 implies

∫ T

0

α2
sd〈X〉s < ∞ P-a.s. (31)

Since P ∗ is assumed to be minimal measure, G∗
0 = E[dP ∗/dP |F0] = 1; and L is a martingale under P ∗.

This implies 〈L,G∗〉 = 0, and so we get
〈L〉 = 〈L,G∗〉 = 0 (32)
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hence L ≡ 0. Therefore, G∗ solves the stochastic equation

G∗
t = 1 +

∫ t

0

G∗
s−(−αs)dMs (33)

which has the solution P ∗ = P̂ given in 26.

(⇐): Assume that the the process Ĝ given in 26 is a square-integrable martingale. We need to show that
the associated martingale measure P̂ is indeed minimal. Let L be a square-integrable P -martingale and
〈L,M〉 = 0. We need to show that L is also a P̂ -martingale.

Since L solves the stochastic equation 33, we get 〈L, Ĝ〉 = 0, and so L is a local martingale under P̂ . To
see why L is actually a P̂ -martingale, note that L and GT is a square-integrable P -martingale. Applying
maximal inequality, we have

Ê sup
0≤t≤T

|Lt| = E sup
0≤t≤T

|Lt|ĜT

≤ (E sup
0≤t≤T

L2
t EĜ2

T )1/2

≤ (4EL2
T EĜ2

T )1/2 < ∞

Hence, the local martingale L is in fact a martingale under P̂ .

The most important characteristic of the minimal martingale measure that is essential to our use is:

Theorem 19 P̂ preserves orthogonality: If L is a square-integrable martingale in P orthogonal to M , then
L is orthogonal to X under P̂ .

Proof: (cf. [FS90]).

Loosely speaking, the theorem above says that the minimal martingale measure P̂ preserves the martingale
property of P as far as possible. In fact, this minimal departure from a given measure P can be expressed
in terms of the relative entropy (or the Kullback-Leibler divergence)

H(Q|P ) :=

∫
log

dQ

dP
dQ if Q ≪ P (34)

and 0 otherwise.

Theorem 20 If P ∗ ≈ P is an equivalent martingale measure,

H(P ∗|P ) ≥
1

2
E∗[

∫ T

0

α2
sd〈X〉s] (35)

Equality holds when P ∗ = P̂ .

Proof: (cf. [FS89]).

We have developed enough tools for finding the optimal strategy. Indeed, given the decomposition 17 of the
contingent claim H, to be rewritten here:

H = H0 +

∫ T

0

ξsdXs + LH (36)
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where LH
t is a square-integrable P -martingale orthogonal to M . But the definition of P̂ and theorem 19

implies that LH
t is a P̂ -martingale orthogonal to X. Hence, the equation 36 becomes a Kunita-Watanabe

decomposition of H under the minimal martingale measure P̂ . The rest is a repetition of what we have done
in Section 3. The right-continuous version of the martingale Vt = Ê[H|Ft] has the form:

Vt = H0 +

∫ t

0

ξsdXs + LH
t (37)

Thus we have proved the main theorem:

Theorem 21 The optimal strategy (ξ, η) is uniquely determined by P̂ , in which:

ξ =
d〈V,X〉

d〈X〉
(38)

6 Incompleteness due to incomplete information

In this section, we consider a situation in which the incompleteness of the market comes from the lack of
information. More precisely, let the information accessible to us be described by the filtration (Ft)0≤t≤T .

Suppose that the claim H is attainable wrt a larger (right-continuous) filtration (F̃t)0≤t≤T :

Ft ⊂ F̃t ⊂ F (0 ≤ t ≤ T )

FT = F̃T

Furthermore, assume that the Doob-Myer decomposition of X wrt (Ft) is still valid for (F̃t), i.e. M is a P−
martingale wrt (F̃t) although it is adapted to the smaller filtration (Ft).

By our assumption, H can be written as:

H = H̃0 +

∫ T

0

ξ̃sdXs (39)

where H̃0 is F0-measurable, ξ̃ is predictable wrt (F̃t).

We also assume that the (F̃t)-semimartingale H̃0 +
∫ t

0
ξ̃sdXs are “square-integrable”, i.e.,

E[H̃2
0 +

∫ T

0

(ξ̃H
s )2d〈X〉s + (

∫ T

0

|ξ̃H
s |d|A|s)

2] < ∞ (40)

Recall the probability space (Ω × [0, T ],P, P ) define in Section 2. Define P̃ to be the σ-field of predictable
sets on (Ω × [0, T ]) associated with the filtration (F̃t).

The following theorem shows that the useful decomposition of H that allows the existence (and uniqueness)
of optimal trading strategies indeed exists by projecting the components of the representation 39 back to
the original probability space.

Theorem 22 Assume that H satisfies 39 and 40. Then H admits the representation

H = H0 +

∫ T

0

ξsdXs + LH (41)
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where

H0 := E[H̃0|F0]

ξ := E[ξ̃|P]

LH := H̃0 − H0 +

∫ T

0

(ξ̃s − ξs)dXs ∈ L2(Ω,FT , P )

in which (LH
t = E[LH |Ft])0≤t≤T is a square-integrable martingale orthogonal to M .

Proof: (Sketch). First of all, we need to show that all components in the decomposition 22 are square-

integrable. Since
∫ T

0
ξ̃sdXs is square-integrable by the integrability condition 40, what remains is to show

the square-integrability for
∫ T

0
ξsdXs =

∫ T

0
ξsdMs+

∫ T

0
ξsdAs. Since ξ ∈ L2(Ω× [0, T ],P, P ), by the maximal

inequality we get
∫ T

0
ξsdMs ∈ L2(Ω,FT , P ). As for

∫ T

0
ξsdAs, applying the representation 25 and using the

maximal inequality gives the square-integrability result.

Now, we need to show that LH is orthogonal to M . It is sufficient to show that for any bounded P-measurable
process µ = (µt)0≤t≤T the following holds:

E[(

∫ T

0

(ξ̃s − ξs)dXs).(

∫ T

0

µsdMs)] = 0

⇔ E[(

∫ T

0

ξ̃sdXs).(

∫ T

0

µsdMs)] = E[(

∫ T

0

ξsdXs).(

∫ T

0

µsdMs)]

But the left hand side can be decomposed into two components (using the Ito-like isometry)

E[(

∫ T

0

ξ̃sdMs).(

∫ T

0

µsdMs)] = E[

∫ T

0

ξ̃sµsd〈X〉s]

and

E[(

∫ T

0

ξ̃sdAs).(

∫ T

0

µsdMs)] = E[

∫ T

0

ξ̃s.(

∫ s

0

µudMu).αsd〈X〉]

Now, in both parts, ξ̃ can be replaced by ξ, which gives what we need.

Remark. The decomposition 22 implies the unique existence of an optimal trading strategy by Theorem 16.

Now, with the decomposition 22 in hands, we are back to the familiar territory, because this decomposition
allows us to compute the optimal (ξ, η) from the minimal martingale P̂ . It turns out that in our context, ξ

can be computed directly from the ξ̃ by taking the conditional expectation wrt P̂ . Let the measure P̂ for P̂
be the counterpart of P for P .

Theorem 23 The optimal strategy is uniquely given by

ξ = Ê[ξ̃|P]

η = V − ξX

where Vt = Ê[H|Ft]

Proof: (Sketch). It is sufficient to consider ξ̃ ≥ 0 (otherwise we can decompose it into the difference of two

non-negative terms). We need to show Ê[ξ̃|P] = ξ, where

ξ = E[ξ̃|P] (42)
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It is equivalent to showing

Ê[

∫ T

0

ξ̃sϑsd〈X〉s] = Ê[

∫ T

0

ξsϑsd〈X〉s] (43)

for any non-negative P-measurable process ϑ. By definition of P̂ (Theorem 18), the left hand side equals

LHS = E[ĜT

∫ T

0

ξ̃sϑsd〈X〉s]

= E[

∫ T

0

Ĝsξ̃sϑsd〈X〉s] (by predictable projection)

= E[

∫ T

0

Ĝsξsϑsd〈X〉s] by definition of ξ)

= E[ĜT

∫ T

0

ξsϑsd〈X〉s]

= RHS

7 Concluding remark

This report surveys a range of important ideas for hedging contingent claims in incomplete markets. The
main machinery is that of the powerful martingale theory. Especially notable is the effective exploitation of
several techniques, such as Kunita-Watanabe projection and Girsanov change of measure.

The assumptions and results reported herein are general enough to capture a wide range of application.
In [FS86] the authors considered an example of stock price that follows a two-sided jump process and
computed explicitly the intrinsic risk and the risk-minimizing strategy for a call option under the setting
P ≡ P ∗ (Section 3). In [S91], the authors studied in detail the case in which the incompleteness comes
from a random fluctuation in the variance of the stock price, which is a geometric Brownian motion, and
computed the optimal strategy using the techniques surveyed in Sections 5 and 6.
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