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Inference of the Dirichlet process base measure

let Q1, . . . ,Qm be m random measures drawn from DPαG , where G = G0,
how to infer about G0 on the basis of Qi ’s?

I studied by Korwar and Hollander (Ann. Prob., 1973)

A realistic elaboration: assume that we have no direct observations of Qi ’s,
only iid observations from mixture models Qi ∗ f

Moreover, base measure G is endowed with a prior distribution, namely
another Dirichlet process prior

I this is the Hierarchial Dirichlet Process (Teh, Jordan, Blei and Beal,
JASA, 2006)

I we ask: what is the posterior concentration behavior of G , given the
observed data?
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Modeling of exchangeable groups of exchangeable data

motivated by De Finetti’s, each group can be modeled by a mixture model, while
the mixture models are coupled by a nonparametric Bayesian hierarchy
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Hierarchical Dirichlet process mixture
(Teh et al, JASA 2006)

G ∼ DPγH

Q1, . . . ,Qm|G
iid∼ DPαG

Yi1, . . . ,Yin|Qi
iid∼ Qi ∗ f
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Posterior concentration of “tables” and “dishes” in Chinese restaurants:

posterior concentration behavior of latent G?

posterior concentration behavior of Qi ’s

quantifying benefits of “borrowing of strength”:
hierarchical model vs treating groups separately?
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Benefits of “borrowing strength”

given ñ-sample (Y 0
1 , . . . ,Y

0
ñ ) from mixture distribution Q0 ∗ f

Q0 is assumed to share the same atoms as Qi ’s

Stand-alone DP mixture

versus

Hierarchical DP mixture
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Talk outline

tools from optimal transportation theory

I Wasserstein metrics for nonparametric Bayesian hierarchies

two main theorems

I posterior concentration rate of Dirichlet base measure
I benefits of “borrowing strength”: improvement from nonparametric to

parametric rate of convergence

main ingredients of proof

I concentration of Dirichlet measure
I concentration of measure along the boundary between two Dirichlet

processes

Long Nguyen (U of Michigan) BNP9, June 2013 7 / 26



Optimal transport problem (Monge-Kantorovich)

goods are transported from producers to customers in the optimal way
(given that transportation cost is proportional to distance)

the optimal transportation cost defines a distance between “production
density” and “consumption density”

squares: locations of producers; circles: locations of consumers
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Wasserstein distance

Let G ,G ′ ∈ P(Θ), the space of Borel probability measures on Θ,
T (G ,G ′) set of all couplings of G ,G ′, i.e., all joint distributions on Θ×Θ which
project to marginals G ,G ′

Definition

Let ρ be a distance function on Θ, the Wasserstein distance is defined by:

dρ(G ,G ′) = inf
κ∈T (G ,G ′)

∫
ρ(θ, θ′)dκ.

When Θ ⊂ Rd , for r ≥ 1, use ‖ · ‖r as a distance function on Rd to obtain
Lr Wasserstein metric:

Wr (G ,G ′) :=

[
inf

κ∈T (G ,G ′)

∫
‖θ − θ′‖rdκ

]1/r

.
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Facts and Examples

Wasserstein distance Wr metrizes weak convergence in the space of probability
measures on Θ.

If Θ = R, then W1(G ,G ′) = ‖CDF (G )− CDF (G ′)‖1.

If G0 = δθ0 and G =
∑k

i=1 piδθi
, then

W1(G0,G ) =
k∑

i=1

pi‖θ0 − θi‖.

If G =
∑k

i=1
1
k δθi

, G ′ =
∑k

j=1
1
k δθ′j , then

W1(G ,G ′) = inf
π

k∑
i=1

1

k
‖θi − θ′π(i)‖,

where π ranges over the set of permutations on (1, . . . , k).
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Distance of nonparametric Bayesian hierarchies

Recall that Wr (G ,G ′) is Wasserstein metric on P(Θ)

Further up in the Bayesian hierarchy, again using Wasserstein-type distance

Distance on measures of measures

Let D,D′ ∈ P(P(Θ)) (the space of Borel probability measures on P(Θ)). Define
Wasserstein distance between D,D′

Wr (D,D′) := inf
K∈T (D,D′)

[ ∫
W r

r (G ,G ′) dK(G ,G ′)

]1/r

.

T (D,D′) is the space of all couplings of D,D′ ∈ P(P(Θ))
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Distance between two Dirichlet processes
(Nguyen, 2013)

Let D = DPαG and D′ = DPα′G ′ . Then

Wr (D,D′) ≥Wr (G ,G ′).

Moreover, if α = α′ then Wr (D,D′) = Wr (G ,G ′).
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Set-up: posterior concentration of Dirichlet base measure

Let Q1, . . . ,Qm be iid from DPαG , where G = G0 (fixed non-random)

G is endowed with another Dirichlet prior G ∼ DPγH , where H non-atomic

Each Qi gives a mixture distribution Qi ∗ f , of which an n-iid sample is given

We will show that

As m→∞ and n = n(m)→∞ at a suitable rate, there is εm,n → 0 such that

ΠG

(
W1(G ,G0) ≥ Cεm,n

∣∣∣∣m × n DataY
[m]
[n]

)
−→ 0

in probability.
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Assumptions

On kernel density f , and base probability measure H of the Dirichlet prior for G

(A1) For some r ≥ 1,C1 > 0, h(f (·|θ), f (·|θ′)) ≤ C1‖θ − θ′‖r and
K (f (·|θ), f (·|θ′)) ≤ C1‖θ − θ′‖r ∀θ, θ′ ∈ Θ.

(A2) There holds M = supθ,θ′∈Θ χ(f (·|θ), f (·|θ′)) <∞.

(A3) H ∈ P(Θ) is non-atomic, and for some constant c0 > 0, H(B) ≥ c0ε
d for

any closed ball B of radius ε.
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Main Theorems

Let Θ be a bounded subset of Rd . Suppose that

(a) Assumptions (A1–A3) hold.

(b) G0 has a finite number of support points in Θ.

(c) The Dirichlet parameters α ∈ (0, 1], γ > 0, and H ∈ P(Θ) non-atomic.

Theorem 1 (Nguyen, 2013)

As m→∞ and n→∞ such that n1(m) ≤ n ≤ n2(m) for some sequences n2(m)
and n1(m)→∞, there holds

ΠG

(
W1(G ,G0) ≥ C

(
n3d logm

m

)1/(2d+2)∣∣∣∣m × n DataY
[m]
[n]

)
−→ 0

in probability for a large constant C .
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Remarks

The details of n1(m) and n2(m) depend on additional conditions of f . Define

α∗ := min
θ∈spt G0

αG0({θ}).

(i) If f is ordinary smooth with parameter β, then it suffices to set

n1(m) � m
4+(2β+1)d′

3d(4+(2β+1)d′)+(2d+2)α∗

and n2(m) � (m/ logm)1/3d , for any d ′ > d . In particular, if n is allowed to
grow at the rate n � n1(m) then the posterior concentration rate is

εm,n � n
− α∗

4+(2β+1)d′ (log n)1/(2d+2) � m−γ(logm)1/(2d+2),

where

γ =
α∗

3d(4 + (2β + 1)d ′) + (2d + 2)α∗
<

1

2d + 2
.
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(ii) If f is supersmooth with parameter β, then it suffices to set

m

logm(log n)α∗(2d+2)/β
. n3d .

m

logm
.

In particular, if n satisfies n3d (log n)α
∗(2d+2)/β � m

log m , then we obtain the

concentration rate εm,n � (log n)−α
∗/β � (logm)−α

∗/β .

(iii) Requirements of the type n1(m) ≤ n ≤ n2(m) appear crucial in deriving
posterior concentration rates in hierarchical models. Beyond this range, we
do not know the rates

(iv) If G0 has infinite support, we conjecture that polynomial rate is no longer
possible.
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Effects of “borrowing strength”

given ñ-sample (Y 0
1 , . . . ,Y

0
ñ ) from mixture distribution Q0 ∗ f

Q0 is assumed to share the same atoms as Qi ’s

Stand-alone DP mixture

versus

Hierarchical DP mixture
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Stand-alone setting

Suppose that an iid ñ-sample Y 0
[ñ] drawn from a mixture model Q0 ∗ f is available,

where Q0 = Q∗0 ∈ P(Θ) is unknown:

Y 0
[ñ]|Q0

iid∼ Q0 ∗ f .

In a stand-alone setting Q0 is endowed with a Dirichlet prior: Q0 ∼ DPα0H0 for
some known α0 > 0 and non-atomic base measure H0 ∈ P(Θ).

(Nguyen, Ann Stat (2013))

Then

ΠQ

(
h(Q0 ∗ f ,Q∗0 ∗ f ) ≥ (log ñ/ñ)

1
d+2

∣∣∣∣Y 0
[ñ]

)
−→ 0

in PY 0
[ñ]
|Q∗0 -probability.
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[ñ] drawn from a mixture model Q0 ∗ f is available,

where Q0 = Q∗0 ∈ P(Θ) is unknown:

Y 0
[ñ]|Q0

iid∼ Q0 ∗ f .

In a stand-alone setting Q0 is endowed with a Dirichlet prior: Q0 ∼ DPα0H0 for
some known α0 > 0 and non-atomic base measure H0 ∈ P(Θ).

(Nguyen, Ann Stat (2013))

Then

ΠQ

(
h(Q0 ∗ f ,Q∗0 ∗ f ) ≥ (log ñ/ñ)
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Alternatively, in hierarchical DP setting
suppose Q0 is attached to the hierarchical Dirichlet process in the same way as
the Q1, . . . ,Qm, i.e.:

G ∼ DPγH , Q0,Q1, . . . ,Qm|G
iid∼ DPαG .

implicitly Q0 is assumed to share the same set of supporting atoms as
Q1, . . . ,Qm, as they share with the (latent) discrete base measure G .

Then, as ñ→∞ and m, n→∞ at suitable rates, there is δm,n,ñ ↓ 0 such that

ΠQ

(
h(Q0 ∗ f ,Q∗0 ∗ f ) ≥ δm,n,ñ

∣∣∣∣Y 0
[ñ],Y

[m]
[n]

)
−→ 0

in PY 0
[ñ]
|Q∗0 × Pm

G0
-probability, where

δm,n,ñ � (log ñ/ñ)1/(d+2) + εr0/2m,n log(1/εm,n),

Here, εm,n is an assumed concentration rate for the posterior of G .
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ΠQ

(
h(Q0 ∗ f ,Q∗0 ∗ f ) ≥ δm,n,ñ
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extra term ε
r0/2
m,n log(1/εm,n) suggests decreased efficiency due to the

maintainance of the latent hierarchy

if m and n grow sufficiently fast relatively to ñ so that εm,n is suitably small,

then the impact of “borrowing of strength” from the m × n data set Y
[m]
[n] on

the inference about the data set Y 0
[ñ] is quite striking:

Theorem 2 (Nguyen, 2013)

1 if f is an ordinary smooth kernel density, then δm,n,ñ � (log ñ/ñ)1/2.

2 if f is a supersmooth kernel density with smoothness β > 0, then
δm,n,ñ � (1/ñ)1/(β+2).

the above theorem shows the improved efficiency for groups with small size
ñ — recall nonparametrate rate if using stand-alone mixture model,
(log ñ/ñ)1/(d+2)
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[ñ] is quite striking:

Theorem 2 (Nguyen, 2013)

1 if f is an ordinary smooth kernel density, then δm,n,ñ � (log ñ/ñ)1/2.
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Proof ingredients

Existence of test argument: a subset in P(Θ) that can be used to
discriminate a pair of Dirichlet processes

Existence of a point-estimate for mixing measures in a mixture model that
admits finite-sample probability bounds

I implying a lower bound of Hellinger distance of HDP data densities in
terms of Wasserstein distance of Dirichlet processes

Posterior concentration under a perturbation of base measure

I requiring concentration of Dirichlet measure

The rest are standard Bayesian asymptotics techniques (e.g., Ghosal, Ghosh
and van der Vaart (2000))
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Existence of test sets

Consider a test DPαG against DPαG ′ , we need to show existence of test set
S ⊂ P(Θ) the difference of measures on S is sufficiently large

Boundary of S is “regular”: the Dirichlet measure on the ε-tube defined along the
boundary of S (in Wasserstein metric) needs to go to 0 at certain rate as ε→ 0

Long Nguyen (U of Michigan) BNP9, June 2013 23 / 26



Existence of test sets

Consider a test DPαG against DPαG ′ , we need to show existence of test set
S ⊂ P(Θ) the difference of measures on S is sufficiently large

Boundary of S is “regular”: the Dirichlet measure on the ε-tube defined along the
boundary of S (in Wasserstein metric) needs to go to 0 at certain rate as ε→ 0

Long Nguyen (U of Michigan) BNP9, June 2013 23 / 26



Point estimate of mixing measures with finite-sample
bounds
Given the assumption on kernel density f , with constants C1 > 0, r ≥ 1. Given
n-sample from a mixture distribution Q0 ∗ f , there exists a point estimate Q̂n of
Q0 and f̂n = Q̂n ∗ f such that for any Q0 ∈ Q: under Q0 ∗ f -measure,

P(h(f̂n,Q0 ∗ f ) ≥ εn) ≤ 5 exp(−c2nε
2
n),

P(W2(Q̂n,Q0) ≥ δn) ≤ 5 exp(−c2nε
2
n),

where c1, c2 are some universal positive constants.

And:

(a) εn = C2(log n/n)r/2d , if d > 2r ; εn = C2(log n/n)r/(d+2r) if d < 2r , and
εn = (log n)3/4/n1/4 if d = 2r .

(b) If f is ordinary smooth with parameter β > 0, then δn = C3ε
2

4+(2β+1)d′
n for any

d ′ > d . If f is supersmooth with parameter β > 0, then
δn = C3[− log εn]−1/β .

Here, C2,C3 are different constants in each case. C2 depends only on d , r ,Θ and
C1, while C3 depends only d , β,Θ and C2.
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Posterior concentration under perturbation

Suppose that sptQ0 ⊂ sptG0, and we use a Dirichlet prior Q ∼ DPαG such that
Wr (G ,G0) is “small”, then the posterior of Q given the data concentrates on the
true Q0 at a suitably fast rate

To prove the above statement, one needs to carefully construct suitable sieves
that occupy most of the probability mass, while requiring small entropy

This requires new facts about the concentration of the Dirichlet process
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Summary

posterior concentration of latent hierarchies in the hierarchical Dirichlet
process

I convergence of the Dirichlet mean measure from mixture data
I asymptotic gain of borrowing information in the Bayes hierarchy

for details see

I Nguyen, X. Borrowing strength in hierarchical Bayes: convergence of
the Dirichlet base measure. arxiv.org/abs/1301.0802
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